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Abstract 

This study analyzes the production impacts of climate change on smallholder agricultural households across Ethiopia. 
Hypothesizing that climate change affects agricultural livelihoods mainly through productive and distributive effects, 
this article examines an integrated farm [crop, livestock, mixed] production impacts overtime. Methodically, the 
comprehensive Ethiopian socioeconomic survey (ESS] panel data, and nation-wide observatory 60-years climate data- 
precipitation and temperature [1960-2019] were merged to form a joint panel database; then analyzed using Ricardian 
panel model with random effects regression. Objectively, factor productivity, the rate of convergence, the historical, real, 
and seasonal climate impacts were investigated against net-agricultural return overtime. The applied panel model 
augments both the temporal, spatial, and individual effects and yields more efficient and consistent estimates than the 
cross-sectional and time series models. The results revealed that CC poses net-negative, increasing and significant 
impacts on factor elasticity, percapita farm output, and net-farm revenue [NFR] due to diminishing marginal returns; 
the progressive temporal impacts; regressive duration impacts; divergence effects on the growth of net-farm return; 
and mixed regional, farm, and HH impacts. Therefore, introducing institutionalized sustainable livelihoods framework 
[green institutions, finance, education, training, research, inputs, subsidy, insurance, market] in agricultural production 
system would enhance sustainable production and improved welfare among smallholder households even under 
changing climate. 

Keywords: Impacts of Climate Change; Agricultural Production; Households; Ricardian Panel Model; Random Effects 
Regression; Ethiopia 

1 Introduction 

Climate change [CC] has been impacting agricultural livelihoods through affecting its production, distribution and 
disposal processes. However, agriculture is the major source of food, income, employment, and growth as nation and 
individuals [1]. Thus, continuous impact assessment shall provide relevant insights, which thereby shape the behavior 
of people in reducing production related climatic costs [2]. Because about 99% of climate change is caused by human 
economic activity and only 1% is attributed to natural process which occurs after many decades [3]. The inherent trade 
off in agriculture justifies its importance and research priority. The sector has been the major source of GDP [43%] and 
carbon emission [50%) in Ethiopia. Nationally, the estimated least GDP loss due to CC was 10% per year [4;5]. But 
nation-wide household level climatic impact study was scant; and even the existing studies were limited in scope or 
methods. 
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The problem statement deals with gap analysis and explains how to fill them via the current study. Gap denotes 
deviation of expectations from reality. The key research gap and motivation was lack of integrated climate impact 
studies at household level across Ethiopia. Despite the booming climate research [6; 7; 8;9; 10] impact on agriculture 
has been inconclusive [11] arguably due to scope and methodological gaps. It involves mixed effects such as benefits 
and costs, negative and positive, progressive and regressive impacts among mixed groups [12; 13;14]. The impacts 
remained ambiguous as integrating both human influence, natural process, and time shocks is difficult despite 
emergence of advanced models. Even with observed climate impacts, the subject is debatable among industrialized and 
agrarian nations; the poor and the rich; nature and human; growth and environmental quality arguments.  

The quest for sustainable agriculture on one hand and vulnerability of agriculture to climate on the other hand, demands 
an inclusive impact assessment today than ever to facilitate integrated response measures [15; 16;60; 17]. We argue 
that climate impact studies reveal inconclusive empirical evidences perhaps they hardly combine the scope and 
methodological differentials [18]. Smallholder agriculture is highly vulnerable to climate. Assessing its effect on 
production and residual impacts and mapping implications in Ethiopia would be a novel enquiry. Therefore, the key 
arguments, identified gaps and the way-outs were shown in that order.  

We argue that assessing the impacts of climate risk on agricultural livelihoods [19] shall be thematically integrated, 
temporally dynamic and spatially wider to optimize sustainability. Precisely, four basic research arguments might 
articulate climatic impacts:  

 It involves multiple impacts, 

 Temporal impacts, 

 Spatial impacts, 

 Unit-specific effects. 

These operational arguments gain scientific rationality through theoretical and empirical evidences [20; 9; 10;11; 
13;14;15]. The inclusion of multiple impact dimensions, different time periods, wider geographical area and unit of 
analysis may treat biases resulting from omitted variables. What is the major gap w.r.t the above argument?  

Most past climate studies conducted in Ethiopia were limited either to narrow geographical scope-district level [ 21;22; 
23;18;19], used time series data [24; 25; 26; 27;28], assumed limited thematic scope (crop, livestock, consumption, 
adaptation, food security, or poverty); used cross-sectional data with small samples [29; 8;9], used linear methods [30]. 
Neither too aggregation nor too localization generate robust outputs. Indeed, seizing both the direct, indirect and 
residual effects that can syndicate both fixed and random effects (30; 23;8; 17) would be difficult. Also, too narrow scope 
and one-time data can’t estimate the dynamic impacts as unit, time and context-related differentials were excluded in 
such studies. Some scholars [31;32;33] focus on the physical effects rather than socioeconomic impacts. Moreover, the 
direction and magnitude of the impact remains equivocal (34;30] and so drawing the joint outcome was rare despite 
the emergence of advanced models. Consequently, this study systematically integrated both the time, farm, and HH-
specific disparities and hence generated a combined robust parameter.  

The objective of the study was to analyze the production impacts of climate change on smallholder agricultural 
production among panel households across Ethiopia. Precisely, it; 

 Assessed factor elasticity wrt farm production value [crop, Livestock, mixed] given climate change, 

 Analyzed the historical impacts of climate change on net-farm revenue [NFR], 

 Explained the current impacts of climate change on net-farm revenue [NFR], 

 Examined the seasonal impacts of climate change on NFR among HHs.  

These objectives are consistent with Ethiopia’s CRGE (2011-2030), SDGs (UNDP, 2016), GTP (2010-2015) GTP-II (2016-
2020) and Ten years development plan, 2021-2030 [PDC, 2021] both focused on agriculture food security and poverty 
reduction [35;36;37;].  

2 Material and methods 

In this section, the methods, data and tools such as SPSS, STATA, GIS, excel were used as climate impact assessment best 
fits with mixed approach. Mainly, the Ricardian empirical panel model, random effects regression and analyses were 
made using integrated climate-socioeconomic-agriculture-Household panel data. 
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Mixed research methods-the descriptive, empirical and panel regressions were used in the study. The empirical 
methods applied include the production function, Ricardian model (RM), and mixed panel estimation methods. This 
article is focused on factor productivity and production impacts of climate change. Initially, climate-augmented 
production function was used to examine factor elasticity of agriculture to the shock, then the Ricardian model measures 
the impact on farm value, and finally mixed panel regressions were used to estimate the marginal impacts. In short, the 
factor, output, and induced impact of climate change have been analyzed. 

2.1 Theoretical Model 

Climate-augmented Production function has been used as the theoretical basis [38; 39;59;40]. Initially, we’ve adapted 
simple production function and then included relevant variables including dummies.  

Hypothesis: Climate change poses a negative and significant impact on factor productivity on agricultural production 
among smallholder households’ overtime. Before estimating the climatic impacts on farm value, factor sensitivity to 
classical output shall be assessed. The classical production model assumes two factors [capital and labor] to produce a 
given output [41]. The technological effect is assumed to be fixed. Thus, the generic static production function is: 

𝑄 = [𝐴]𝐹[𝐾𝛼𝐿1−𝛼] … … … … … … . . [1] 

Where, Q is agricultural output [crop yield, livestock value, mixed value], A is technological constant, 𝐹 is the technical 
relationship between inputs & output, K is units of capital (oxen], L is number of labor units, 𝛼 is elasticity of capital to 
Q, and 1 − 𝛼 is elasticity of labor wrt. Q. 

When we augment the temporal factor in to the static production function, the household level panel production 
function can be given by: 

𝑄𝑖𝑗𝑡 = [𝐴𝑖𝑗]𝐹𝑖𝑗𝑡[𝐾𝑖𝑗𝑡
𝛼  𝐿𝑖𝑗𝑡

1−𝛼] … … . . . [2] 

Where, 𝑄𝑖𝑗𝑡  is the output of household [HH] i at farm j in time t; 𝐴𝑖𝑗  is technical constant of HH i at farm j; 𝐹𝑖𝑗𝑡 , 𝐾𝑖𝑗𝑡,& 𝐿𝑖𝑗𝑡  

are respectively the functional relation, units of capital and number of labor for HH i at farm j in time t.  

Assuming the theories and empirics on climate economics, we’ve augmented CC into simple production model to 
investigate its effect on farm production. Hence, the climate-augmented production function can be presented by: 

𝑄𝑖𝑗𝑡 = [𝐴𝑖𝑗]𝐹𝑖𝑗𝑡[𝐾𝑖𝑗𝑡
𝛼  𝐿𝑖𝑗𝑡

1−𝛼𝐺𝑖𝑗
𝜎 ] … . . [3] 

Where, G is the exogenous climate change proxied by the long-run [1960-2019] mean precipitation [PH] and 
temperature [TH] and their respective means for the first three ESS waves [PH1, PH2, PH3; TH1, TH2, & TH3 ]. These 
values were calculated from moving average to control endogeneity and obtain consistent data with the ESS panel. The 
moving averages for the first [ESS1], second [ESS2], & third [ESS3] waves were computed using 1961-2010, 1962-2012, 
and 1963-2014 in that order. The statistics were used to proxy the historical & current impact. Besides the long-run 
impacts, the short-run climate variation[seasonality] affects seasonal production too. Therefore, the seasonal anomalies 
[S] were included in equation (3) and generates:  

𝑄𝑖𝑗𝑡 = [𝐴𝑖𝑗]𝐹𝑖𝑗𝑡[𝐾𝑖𝑗𝑡
𝛼  𝐿𝑖𝑗𝑡

1−𝛼𝐺𝑖𝑗
𝜎  𝑆𝑖𝑗

𝜃 ]. . . [4] 

Where, S is the mean seasonal climate variability; we call it real climate [2011-2016] and is the sum of four seasonal 
averages of T & P [∑ [𝜃𝑆𝑇𝑆,𝑖,𝑡

4
𝑆=1 𝑎𝑛𝑑 𝜃𝑆𝑃𝑆,𝑖,𝑡] for the survey period. The four seasons per year are; summer, S1 [Junuary-

Augst], Autumn, S2 [September -November], winter, S3 [December-February], and spring, S4 [March-May] were used for 
seasonal impacts. This was to isolate seasonal shocks[S] from long-run constants [G] and estimate the seasonal effects. 
The seasonal means were deducted from their own historical means to create seasonal shocks [deviations]. Finally, the 
deviations and their squared values were included in our model too. 

Moreover, we have augmented the general disturbance term [U] in equation (4), and formed an advanced production 
function of the form: 

𝑄𝑖𝑗𝑡 = [𝐴𝑖𝑗]𝐹𝑖𝑗𝑡[𝐾𝑖𝑗𝑡
𝛼  𝐿𝑖𝑗𝑡

1−𝛼𝐺𝑖𝑗
𝜎  𝑆𝑖𝑗

𝜃  𝑈𝑖𝑗𝑡
𝜔 ] … [5] 
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Where, U is the disturbance term, which capturers the excluded errors in the model; 𝜔 = 1 − [𝛼 − (1 − 𝛼) − 𝜎 − 𝜃]. 
Technically, 𝑈𝑖𝑗𝑡  comprises three errors terms; unit-specific errors, time-specific errors, and random errors. More 

formally, the general error term is given by:  

𝑈𝑖𝑗𝑡 = 𝜇𝑖+𝛾𝑡  +휀𝑖𝑡 … … . . … … . . … … . . [6] 

Where, μi is household-specific errors that can control time-invariant changes among HHs;γt is time-fixed errors that 
could control temporary shocks common among HHs, and εit  is the random error independent of regressors, 
Zi,t and an individual errors, μi. 

Moreover, symbolizing all endogenous explanatory variables included in equation [5] by Z, a modified production 
function can be generated as:  

𝑄𝑖𝑗𝑡 = [𝐴𝑖𝑗]𝐹𝑖𝑗𝑡[𝐺𝑖𝑗
𝜎  𝑆𝑖𝑗

𝜃  𝑍𝑖𝑗𝑡
𝛾

 𝑈𝑖𝑗𝑡
𝜔 ] … . . [7] 

Where, Z is vector of time varying factors such as household characteristics including age, sex, education, labor, land, 
capital, oxen, adaptation, institutions [ extension, credit, advise, training], slope, and other dummies variables such as 
year, farm and region dummies.  

Factor productivity to farm yield under climate change can be estimated linearly via transforming the production 
function [eq. 7] into logarithm. Accounting this argument, the equivalent panel regression equation can be given as: 

𝑙𝑛𝑄𝑖𝑡𝑗 = 𝛼 + 𝛽𝑙𝑛𝑄𝑖𝑗𝑡−1 + 𝜃𝑆𝑖𝑗𝑡
̀ + 𝛿𝐺𝑖𝑗 + 𝛾𝑍𝑖𝑗𝑡 + 𝜔𝑈𝑖,𝑡 . . (8) 

Where, 𝑙𝑛𝑄𝑖,𝑡 is the natural logarithm of farm output of farming households i, at time t, 𝛼  is technical constant; 
β is cofficenct of the first lag output;  𝑤 hich captures its lagged effect on current production and also it denotes 
convergence term, t is the 3-ESS waves[ESS1, ESS2, & ESS3]. 

The sing of beta-coefficient, 𝛽 denotes the existence of convergence and its value shows the rate of adjustment. While 
the negative 𝛽  shows convergence of output to its long-run steady state [ i.e. Y/L, y & K/L, k], positive 𝛽  reveals 
divergence of growth in the long-run. 

Unlike some empirics [42;9;32;33]; we’ve studied the existence and rate of growth convergence given the typical 
climate. The convergence effects on steady state values [y, k, c] can be estimated by adopting Solow-Swans convergence 
hypothesis [40] and empirical evidences [43].  

The term 𝜃𝑆𝑗,𝑡
̀  is vectors of climate anomalies for farm j at time, t-four seasons, S=1,2,3, & 4. The four-season model 

provides better out-off sample forecasts than the one season [e.g. annual] model [44]. We included it to analyze short-
run and seasonal effects.  

2.2 Empirical Model 

Climate change would induce net-negative and significant impact on smallholder agriculture [45;38]. To verify this 
argument, the Ricardian model [RM] was used as a modified empirical model. The model was devised by David Ricardo 
(1817) to examine the long-run impacts of climate change on agriculture [46;47;39]. Initially, Ricardo assumed that 
land rent or land value reflects the productivity of agriculture [46]. Later on, the model was relaxed by scholars [42;46; 
47] to account environmental changes. The model [i] focuses on farm-level; [ii] assumes constant price; and [iii] 
augments technological changes [48;8;9;30].  

The RM is preferred over general equilibrium models [50] in that it is flexible to augment context-specific factors such 
as changes in technology, adaption, agronomic practices [49;17] and has widely used in climate impact analysis. 
Contrarily, the model is criticized for assuming fixed price under changing socioeconomic circumstances [48].  

Innovatively, its integrated climate-socioeconomic panel data, comprised crop and livestock production, and captured 
the individual, spatial and temporal effects in the model. Smallholder farmers are rational and price takers, yet allocate 
their land to maximize return given climate state. Hence, farmers choose the level of inputs and output that yield 
maximum return. Given these assumptions, net-farm value (V) from agricultural production under climate change [46] 
can be estimated by the Ricardian model with an integral: 
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𝑉 = ∫[∑ 𝑃𝑄(𝑋, 𝐺, 𝑍) − 𝑀′𝑋]

𝑛

𝑖=𝑚

𝑒−𝜑𝑡𝑑𝑡

∞

𝑡

… … . … … (9) 

Where, P is vector of exogenous market price per unit of output, Q; X is a vector of purchased inputs except land, M is 
vector of input prices; t is time; 𝜑 is a relevant discount rate (rate of yield growth); i is summation of row vectors, m and 
column vectors, n. 

By replacing terms, 𝑄 in equation [8] by 𝑉 in equation [9] and taking the natural logarithm of V, the linear relationship 
between farm value and climate change can be created. In our case, land value was proxied by three outcome variables: 
net crop revenue [NCR], net-livestock revenue [NLSR], & net-agricultural revenue [ NFR]. Again, V is computed by 
deducting mean outcome at BAU from its value at CC [CC1-CC0]. The BAU denotes the historical [1960-2019], and current 
[2011-2016] climate means. While CC0 shows the mean climate values at BAU, the CC1 is observations lies ±1.5 from 
their means at BAU. However, various transformations such as logarithm were made for statistical conformity.  

The utility of farming households given climate change can be estimated through adopting the modified Ricardian panel 
model with regression equation: 

ln 𝑉𝑖𝑡𝑗 = 𝛼 + 𝛽𝑙𝑛𝑉𝑖𝑗𝑡−1 + 𝜃𝐸𝑆𝑆𝐻𝑖𝑗𝑡
̀ + 𝛿𝐺𝐻𝑖𝑗

+ 𝛾𝑍𝑖𝑗𝑡 + 𝜔𝑈𝑖,𝑡 . . (10) 

Where, 𝑙𝑛𝑉𝑖𝑡  is natural logarithm of farm value, 𝑉𝑖𝑗𝑡−1 is the lagged value of the farm, 𝐸𝑆𝑆𝐻 is wave-specific historical 

climate, 𝐺𝐻𝑖𝑗
 is the longtime historical climate means. 

The reference period [1960-2019] which represents the business as usual [BAU] scenarios. The mean deviations for 
historical climate were computed by deducting wave-specific real climate means from the historical means. Equation 
10 captures the impact of historical climate and its shocks on farm return. The short-run impacts of climate were 
measured by deriving ESS wave-specific climate [real climate] means for the historical and real mean values during the 
survey periods 2011-2016. Thus, the current impact of climate was estimated thru running panel regression equation:  

ln 𝑉𝑖𝑡𝑗 = 𝛼 + 𝛽𝑙𝑛𝑉𝑖𝑗𝑡−1 + 𝜃𝑆𝐶𝑖𝑗𝑡
̀ + 𝛿𝐺𝐶 𝑖𝑗

+ 𝛾𝑍𝑖𝑗𝑡 + 𝜔𝑈𝑖,𝑡 . . . (11) 

Where, 𝑆𝐶  𝑎𝑛𝑑 𝐺𝐶  respectively indicates the current and historical climate means for the first three ESS waves citrus 
paribus. Depending on estimation techniques, climate shocks and their squared values were included to estimate the 
marginal effects. Operationally, climate shocks are mean climate deviations from respective BAU scenario.  

Likewise, the seasonal impacts of climate were estimated by computing and augmenting seasonal climate means and 
their deviations from respective references values [see equation 11]. The seasonal climate means and their deviations 
were calculated by subtracting each of the four historic seasonal climate means from the real climate means [2011-16]. 
This was made to examine the effect of seasonality on farm utility. Explicitly, the seasonal impacts of climate variability 
were measured via the modified panel regression equation:  

ln 𝑉𝑖𝑡𝑗 = 𝛼 + 𝛽𝑙𝑛𝑉𝑖𝑗𝑡−1 + 𝜃𝑆′𝑠𝑖𝑗𝑡
̀ + 𝛿𝐺𝑠𝑖𝑗

+ 𝛾𝑍𝑖𝑗𝑡 + 𝜔𝑈𝑖,𝑡 . . (12) 

Where, 𝑆𝑠 &𝐺𝑠 respectively are the seasonal climate shocks for 𝑆1, 𝑆2, 𝑆3, and 𝑆4 ct. paribus. Both seasonal shocks[s] & 
their squared values [ s2] were used to find the marginal effects.  

A series of modeling processes were undertaken [11;12] such as aggregation, disaggregation, linear and non-linear 
transformation, computing dummies and indices mainly for climate variables and other covariates as innovative and 
objective transformation process.  

2.3 Estimation Methods 

Depending on model specifications, panel data can be pooled, fixed, random effects model, and dynamic models [39; 48; 
49]. Here, the random effects model was used through OLS and GLS techniques. As merit, panel model integrates both 
fixed and random effects [42]. Panel models are more efficient and consistent than cross-sectional and time series 
methods [43]. Satisfying the classical assumptions [endogeneity, heterogeneity, Hausman test] proves statistical proof. 
The correlation between and within effects of covariates [𝑋𝑖 , 𝑍𝑖] and Regressand [𝑦𝑖𝑡] with error terms [𝑈𝑖𝑡] and lagged 
regressand [𝑦𝑖𝑡−1], shows as which method is best to apply. 
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Pooled model [PM] simply merges samples together in which individual or time variations [50; 7;11;27] are not allowed; 
in fixed effects model [FE] the unobservable effects are correlated with observable variables; often endogeneity omit 
estimates and limit efficiency; so, both PM and FE were not best model in our case [51]. The random effects model [RE] 
assumes that the between panel differences & within panel errors are caused randomly, and we can estimate coefficients 
from a distribution with constant parameters. The between transformation-induced RE panel regression equation 
would be:  

𝑙𝑛𝑦𝑖𝑡 = 𝛼 + 𝛽𝑙𝑛𝑦𝑖𝑡−1 + 𝜃′𝑋𝑖𝑡 + 𝛿𝐺𝑖 +  �̇�𝐺𝑑𝑖 + 𝛾𝑍𝑖𝑡 + �̇�𝑍𝑑𝑖 + 𝜔𝑈𝑖𝑡 ... [13] 

In this case, OLS can estimates parameters [𝛼, 𝛿, 𝜃, , 𝛾]consistently, but GLS is more efficient. Mainly the random model 
assumes absence of correlation within individuals and between panels or errors are caused only randomly. The robust 
model [RoM] is used when the within panel dependence is assumed [52; 11;17]. Technically robust model is related to 
random effects model. Hence, equation [14] is our basic panel regression equation. However, relevant statistical tests 
were made before running the models as explained above. 

2.4 The Data 

Mainly nation-wide observatory climate data [1960-2019] and the first three waves of the Ethiopian socioeconomic 
survey-ESS (2011-2016) panel data were used in this study. 

The Climate Data: assumed precipitation (millimeter) and temperature (degree Celsius)]. The long-term [60 year] 
nation-wide station-based monthly precipitation and temperature data [1960-2019] was obtained from national 
meteorological service agency [53] of Ethiopia; then classified, processed, validated and used for analysis. Temporally, 
the data was divided into historical (1960-2010), real (2011-2016) and seasonal [quarter-based] climate data. This 
large data was merged with ESS panel data at woreda, zonal, regional and national levels. The intensive data merging 
process used geo-referenced coordinates which was included in ESS. Although all level climate values were calculated, 
for more representativeness woreda-level data was used for analysis. The nearest station data was assumed for each 
sample HHs. The mean and its deviations were computed for the annual, quarter & monthly figures one-to-one for the 
historic, current, and seasonal impacts. 

The historical climate data took the long-run annual mean precipitation and temperature; the real climate data used 
three annual means for the same variables which are consistent with the first 3-ESS [2011/12, 2013/14, 2015/16] 
periods. The mean historical climate [ PH, TH], current climate [PC, TC] & seasonal climate [ PS, TS] were calculated and 
included in the model.  

Moreover, the current climate means were computed the historical climate [PH1, PH2, PH3 and TH1, TH2, TH3] for BAU, 
real climate [PC1, PC2, PC3, TC1, TC2, TC3] and seasonal climate [PS1, PS2, PS3, TS1, TS2, TS3] respectively for the first, 
second & third ESS. Their respective mean climate deviation [PC_PH, TC_TH, Pw1_CP Pw2_CP Pw3_CP Tw1_CT Tw2_CT 
Tw3_CT]; joint dummies [dPT_HC, dPT_RC] and indices [IPT_HC, IPT_RC] were computed. Hence, the historical, current, 
seasonal climate and their deviations were used to estimate the past, current, and seasonal impact analysis in that order.  

The Socioeconomic Data: The Ethiopian Socioeconomic Survey-ESS (2011-2016) panel data was used as main data. The 
first three waves [ESS1, ESS2, and ESS3] of ESS were used after a series of data processing. It is a living standards 
measurement study-integrated surveys on agriculture and was collected through joint project between the World Bank 
and CSA [54]. ESS is national representative and geo-referenced panel data involving comprehensive socioeconomic, 
climate and institutional data. The ESS involves three broad datasets-the household data, the agriculture data and 
community data. Also, institutions, strategies, policies & livelihood patterns were included.  

The survey covered nine regional states of Ethiopia, namely Amhara, Oromia, SNNP, Tigray, Afar, Benishangul Gumuz, 
Gambella, Harari, and Somali region; Addis Ababa, and Dire Dawa. Up to date, it was conducted four times: the ESS1 in 
2011/12, the ESS2 in 2013/14, the ESS3 in 2015/16 and the ESS4 was in 2018/19. But, ESS4 was not included in the 
analysis as it was collected after data processing was started on earlier waves. 

 The ESS used multistage stratified sampling based on administrative regions, enumeration areas (EA) and households 
(HHs). It used regions as strata, selected EAs and HHs in two-stages. The number of EAs rose from 333 (3,969 HHs) in 
ESS1 to 433 (5,262 HHs) in ESS3. Starting from ESS2, 290, 43, and 100 EAs were included from rural areas, small towns, 
and urban areas. The total sample HHs included in 3-ESS waves were about 14,333.  

 

https://www.google.com/search?rlz=1C1VDYX_enET883ET883&q=temperature+in+degree+celsius&spell=1&sa=X&ved=2ahUKEwiV9KjJk7TyAhUJQ80KHeahDCEQkeECKAB6BAgBEC4
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2.5 Model Fitness Test 

Before running regressions, model adequacy tests such as the Breusch_Pagan test; Hausman test, and multicriticality 
tests [55; 7; 49] were conducted and verified model fitness for analysis. Then, net-farm revenue [NFR, NCR, and NLSR] 
was regressed against the exogeneous climate change [variable of interest]; the lagged NFR, endogenous socioeconomic 
covariates and dummies [control variables] via Ricardian panel model induced Random effects method was used.  

3 Results and discussion 

The household-level results were analyzed using the integrated ESS panel data and 60 years station-based national 
climate data [precipitation and temperature]. Consequently, the results were presented and analyzed starting from 
descriptive and regression outputs as follows. 

 
Source: Drawn from NMA, 2019[53] 

Table 1 Precipitation[mm] Trends in Ethiopia,1960-2019 

 

 
Source: Drawn from NMA, 2019[53] 

Table 2 Temperature [10 ℃] Trends in Ethiopia,1960-2019 

Precipitation Trends in Ethiopia: figure 1 shows the historical [1960-2019] and the real [2011-2016] annual mean 
precipitation across Ethiopia. Exactly, the statistic covers representative samples across the nation. The historical, 
minimum & maximum annual mean precipitation was 1069mm, 144mm and 2031 in that order. The same statistics for 
real precipitation was 863.5mm, 247mm, and 1696mm. The real rainfall falls below the past mean. 
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Temperature Trends in Ethiopia: again figure 2 displays the historical and the real annual mean temperature [℃] across 
the nation. The statistic shows ESS woredas across Ethiopia. Thus, the historical mean, minimum and maximum annual 
temperature were 19.3℃, 10.2℃nd 29.4℃ one-to-one. Consistent means for the current temperature were 19.9℃, 

10.5℃, 32.8℃ in that order. The real temperature was higher than its historical value; this implies that the current 
period involved more adverse states than past periods had. Plainly, the current climate exhibited drier rainfall and 
hotter temperature than its historical cases. 

Table 1 Distribution of Precipitation [mm] by Regional States of Ethiopia 

Region Historical Annual Mean Precipitation
[1960-2019 

Real Annual Mean Precipitation 
[2011- 2016]

Mean SD Min Max Mean SD Min Max 

Tigray 679.3 104.1 520 958 667.0 230.8 352 1226 

Afar 383.0 276.1 144 1061 449.7 142.4 287 678 

Amhara 1170.9 275.1 711 1962 829.4 225.3 522 1497 

Oromia 1220.5 394.8 552 2031 925.2 282.6 367 1590 

Somalie 568.7 139.9 246 774 532.3 160.5 249 795 

Ben.Gumuz 1366.5 245.2 1096 1846 1207.4 137.2 921 1465 

SNNP 1293.0 314.0 264 2006 1020.3 202.5 247 1696 

Gambella 1220.2 228.2 846 1918 1283.2 203.0 801 1565 

Harari 720.1 41.4 622 803 757.7 27.1 712 803 

Addis Ababa 1116.2 53.6 952 1165 874.0 37.0 766 935 

Dire-Dawa 693.3 83.3 550 970 689.1 43.0 615 800 

National 1069.3 393.2 144.0 2031 863.5 279.3 247 1696 
Source: Author form NMA, 2019 [53] 

Table 2 Distribution of Temperature [0c] by Regional States of Ethiopia 

Region Historical Annual Temperature 

[1960-2019] 

Real Annual Temperature 

[2011-2016] 

Mean SD Min Max Mean SD Min Max 

Tigray 20.0 3.6 11.7 28.5 20.1 2.9 14 28.8 

Afar 26.9 2.1 20.9 28.9 27.8 2.1 22 30 

Amhara 17.9 3.2 10.2 28 18.3 2.0 13 28.3 

Oromia 18.0 2.5 11.3 24.5 18.4 2.0 12 22.8 

Somalie 22.2 2.8 17.5 29.4 24.2 2.3 20 29.4 

Ben.Gumuz 22.3 1.6 18.8 26.2 22.7 1.4 21 26.8 

SNNP 18.7 2.3 11.3 28.6 19.8 2.2 10 30.5 

Gambella 24.8 3.1 16.9 27.7 26.7 3.6 19 32.8 

Harari 19.5 1.6 17.3 22.6 19.3 0.0 19 19.3 

Addis Ababa 16.3 1.0 14.5 18.7 15.8 0.6 13 16 

Dire Dawa 22.6 2.1 16.4 25.1 22.8 0.0 23 22.8 

National 19.3 3.5 10.2 29.4 19.9 3.3 10 32.8 
Source: Author form NMA 2019[53] 
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Distribution of Climate Trends by Regions: the distribution of climate state across regions may involve physical effects 
on production and related effects. Table 1 shows the distribution of historical and real precipitation [mm] in eleven 
regional states of Ethiopia.  

The mean precipitation decreased from 1069.3 mm in1990-2019 to 863.5mm during the ESS. The minimum rainfall 
was 144mm [historical] and 279mm [real]. The maximum [max] historical mean precipitation and the real mean 
precipitation was 2031mm and 1696mm in that order. Table 2 shows the historical [1990-2019] and the actual [2011-
2016] temperature trends across Ethiopia. Therefore, the historical and real mean temperature in Ethiopia was 19.30C 
and 19.9℃.

The min and max mean for past temp was 10.2℃. and 29.4℃.; while the real value for the same variables were 10℃. 

and 32.8℃. respectively. In sum, the current temperature trends above the historical values across nine regional levels 
and hence, similar impacts are expected. 

3.1 Descriptive Results 

Summary of descriptive results on basic variables were shown on table 3 and described. The mean cereal product was 
about 12.7 quintal per hectare during ESS. Respectively the net-crop and farm revenues were birr 18,712; and birr 
22,696. The mean age of HHs heads was 45 years, the mean year of family schooling is 12 years; family size and labor 
were 5 and 2.5 respectively. The land and oxen were among the main factors of production. 

   Table 3 Descriptive Statistics of Sample Households [N=14,333] across Ethiopia 

Variable Unit Mean 

ESS ESS1 ESS2 ESS3 

Cereal Yield Quintal/ha 12.7 13.4 12.8 12.4 

Cereal Sale Birr 1,169.5 1,313.7 820.8 1,737.7 

Livestock Value TLU 4.9 5.1 5.0 4.7 

Livestock sales Birr/year 3,405.7 3,493.4 3,556.3 3,209.5 

Net-crop Revenue Birr/year 18,712.1 15,843.9 18,820.5 20,085.1 

Net-Farm Revenue Birr/year 22,695.9 18,510.1 24,015.3 23,385.6 

Net-agri. Income Birr/year 33,434.7 2,3693.0 33,362.2 37,927.6 

Age Year 44.9 44.0 44.2 46.4 

Education Year 12.1 8.6 13.1 13.9 

Labour Force Number 2.5 2.4 2.6 2.6 

Family Size Number 5.2 4.8 5.0 5.6 

Land Hectare 1.0 1.0 1.0 1.1 

Oxen Number 0.8 0.9 0.8 0.8 

Source: Estimated by Author, 2022 

Factor Elasticity in Agricultural Production given CC: factor responses to farm output was observed given the historical 
climate [BAU] states across Ethiopia. We used it to detect factor contribution. The proxy outcomes were CPV-crop 
production value [quintal/ha], LSPV-Livestock production value [TLU], and MPV-mixed farm production value [Birr]. 
For improved precision, the historical climate mean was divided into means of survey waves: ESS, ESS1, ESS2, and ESS3. 
Among the ESS periods, ESS3 was the year in which sever CC was occurred and about 14 million people was affected. 
Factor elasticity was estimated against farm values by allowing farm-driven variation via random effects method. 
Spatial-heterogeneity & methodical similarity was assumed.  

Table 4 summarizes the factor elasticities under typical climate conditions. The classical factors have inverse relation 
to output given CC. A typical climate has reduced, reversed or delayed factor contribution. Age, education, land, labor, 
oxen, irrigation, adaptation and slope had affected output. During ESS3, land, labor, oxen, age and education had negative 
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effect. The institutional factors had mild or negative effects overtime and exclusive effects during extreme periods. 
During ESS 1% rise in age, education, labor, land, oxen, irrigation, adaptation, slope, & institutions rose MPV at 4%; 11%; 
9%;1%; 3.1%;15%;17%; 4.3%; & 2.1%. During ESS3, a 1% change of the variables affected MPV at-3%; -13.4%; -5%; -
8%; -5.1%;10.6%; 11.2%; -2.9%; &-2.2%. Unlike others, irrigation [≈11%] & adaptation [11%] had positive effect. 

The estimates indicated that factor elasticity kept positive for major covariates during the BAU, but it had negative 
response on MPV during ESS3. As hypothesized, age and education of HHs [i.e. entrepreneurial skill]; labor; land; oxen 
[capital] and institutions [rules of the game] revealed negative and significant impact. An increase in age by 1 percent 
reduces output but by smaller proportion [inelastic to MPV]. A 1% rise in land size diminishes output by nearly equal 
[8%] but smaller rate under CC. That is the damage caused by CC increases with the size of farm land. Technically, the 
result signals that CC involves progressive impact wrt. land size. The inverse response institutions may signify use of 
less suitable or expensive or untimely actions. Therefore, CC imposed a negative effect on MPV relative to regional states, 
shock periods, and farm types with different levels of significance. 

Unlike prior assumption, institutions responded negatively to CC primarily during the ESS3. This result could provide 
context-specific evidences in that during 2015-16 neither state nor non-state actors nor HHs took pertinent response 
initiatives. There was little innovative and applied climate smart agricultural schemes, policies, resources, technologies, 
finance, info, and other special services were given. In simple terms, most of the efforts were traditional which hardly 
responds to the emerging climatic risks. Besides the orthodox factors, time, region, and farm dummies had negative 
effects on output. Climatic shocks reduced factor elasticities or increase factor costs, and hence declined output and 
related benefits. Temporally, the impact of climate was rising overtime with little variation. Shocks poses a negative and 
significant impact. The results imply that inputs have shown an inverse and large effects on farm values under climate 
extremes. Climate risk put net-negative effect on factor elasticity [labor, land, capital, experience] and net-farm revenue. 

While the long-term climate [BAU] shown mixed impacts in magnitude and direction, the climate shocks mainly 
involved negative & significant impacts on output. Trends of climate shocks better explains the impact state than the 
BAU does. Such info provides insight that enable climate response scheme. Generally, climate change affects the supply 
& productivity of inputs negatively viz. labor, land, capital, and expertise. The above results are consistent with some 
empirical works [56;6; 23;24;25;27;28; 29; 41]. Therefore, climate change negative impact on factor elasticity which 
reduces the productive capacity, productivity and return. 

Historical Impacts of Climate Change on net-farm revenue [NFR]: examines the long-term impacts of climate on the 
value of agricultural production. The three farm-specific outcomes were net-crop revenue [NCR], net-livestock revenue 
[NLSR], and net-farm revenue [NFR] both were in ETB. Having adopted production-induced Ricardian panel model, net 
impacts of CC on affected HHs was presented in table 5 and analyzed thereafter. Serially, the historical climate & its 
shocks had a rising impact. The rate of growth of NFR was diverging overtime. This term was proxied by the first lag of 
outcome variable-L. dv [NCR, NLSR, & NFR].  

As indicated in the first row of table 4, the sign of all coefficients was positive, which implies divergence of output growth 
in the long-run. Unlike normal condition, the rate of growth of agricultural value [NFR] among HHs was declining 
overtime compared with the steady state level. In our case, the rate of NFR growth was diverging at 2.6%, 3.2%, 2.2% 
& 4.1% one-to-one during ESS, ESS1, and ESS2 & ESS3. I.e. CC was reducing the amount, utility & productive capacity of 
farms both further declining both the current & future production and related gains. Such incidences further rise 
inequality among households & so deteriorate their livelihoods. 

In general, the values of BAU, erratic periods, and shocks respectively had a positive, negative, & negative impacts on 
NFR. The historical-BAU [PH, TH] had positive & significant impact on net return. But the historical climate [PH3 & TH3] 
during ESS3 & the mean shocks [CP_HP & CT_HT] intricate a negative and significant effect. For example, a 1% rise in 
BAU rainfall increased NFR at 0.02% ,0.03%, 0.031%; the erratic periods’ rainfall affected NFR at 0.55%, 0.5%, 0.6% & 
0.8%; & shocks of the same variable reduced NFR at 0.4%, 0.7%, 0.6%, & 0.8% during ESS, ESS1, ESS2 and ESS3. The 
joint impacts of CC on NFR was estimated at 5%, 4%, 5%, and 6% during the study period. 

Similarly, a 1% rise in historical temp [TH], the irregular temp [ESS3]; and its shocks [CT_HT] increased the NFR at 3%, 
8.3%, and 0.7 % in that order. A 1 % increase in BAU temp affected the NFR at 2.7 %, 2.8%, 2.9 %, & -3 % during ESS, 
ESS1, ESS2 & ESS3; but the historical temp shocks declined NFR at 0.5%, 0.6%, 0.6%, and 7% during the same period. 
Largely, these results indicate that both the historical, irregular periods’ and shocks significantly affecting farm return 
at different directions. While the historical climate had positive impact, all the rest parameters shown negative impacts. 
These results confirmed the existing empirical evidences [57; 5; 23;26; 45]. 
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Table 4 Factor Elasticity in Smallholder Agricultural Production among HHs Given Climate Change in Ethiopia 

Variables 
CPV-Crop Production [ Qtl /ha] LSPV-Livestock Production [ TLU] MPV-Mixed Production [Birr/HH] 

ESS ESS1 ESS2 ESS3 ESS ESS1 ESS2 ESS3 ESS ESS1 ESS2 ESS3 

Sex_hd 0.034*** 0.014** 0.034*** 0.029*** 0.038*** 0.0189*** 0.031*** 0.041*** 0.033** -0.010 -0.09 0.012** 

Age_hd -0.10*** -0.06*** -0.6*** -0.08*** -0.10*** 0.02 -0.01 -0.03** 0.04** 0.03* 0.01 -0.03** 

Edu_hd 0.034*** 0.0164*** 0.039*** -0.22** .0305*** 0.057 0.0205*** -0.127** 0.11*** 0.106* 0.096** -0.134*** 

Labor 0.10** 0.03* 0.01* -0.12** 0.10*** 0.02*** 0.03*** -0.03*** 0.09*** 0.085* 0.8*** -0.05*** 

Land 0.018** 0.015* -0.029* -0.11** 0.001* 0.168*** 0.122*** -0.125*** 0.10** 0.079* 0.021* -0.08** 

Oxen .044*** 0.03** 0.034*** -0.01*** 0.02** 0.04* 0.011* -0.04** 0.031*** 0.038*** 0.086*** -0.051*** 

Irrigation 0.16*** 0.14*** 0.151*** 0.13*** 0.14** 0.134** 0.141** 0.140*** 0.15*** 0.135*** 0.15*** 0.106*** 

Adaptation 0.18*** 0.12*** 0.137*** 0.134*** 0.162*** 0.140*** 0.144*** 0.138*** 0.17*** 0.12*** 0.14*** 0.112*** 

Slope 0.0210** 0.013** 0.020** 0.028** -0.020** -0.008 0-.034** -0.043** 0.043** 0.032** 0.052** -0.029** 

Institution 0.023** 0.026** -0.012** -0.035*** 0.020*** 0.004** 0.032*** -0.025*** 0.021** 0.032** -0.041** -0.022*** 

PH_BAU 0.05** 0.016* 0.025*** -0.255*** 0.0152** 0.017 -0.016*** -0.098*** -0.08** 0.019 -0.0285* -0.083** 

TH_BAU 0.002** -0.001* -0.005 -0.006*** 0.002** 0.006 0.007 -0.008** -0.006** -0.004** -0.004* 0.002* 

SP_BAU -0.062** 0.051* -0.018** -0.110** -0.035** 0.289*** -0.185*** -0.007*** -.234*** -.187** -0.285*** -0.127*** 

ST_BAU -0.003*** 0.007* -0.005* -0.035** -0.003*** 0.004*** -0.004* 0.002** .0015*** .002** -0.0043** -0.002*** 

time -0.025* 0.011 -0.040** -0.038** -0.025* 0.010 -0.002* -0.018** -.004* .0015* 0.006* -0.0059** 

farm -0.021** 0.024** 0.091** -0.025** -0.029* 0.056*** 0.043*** 0.049*** .152*** -.06* 0.129*** 0.183*** 

region -0.045*** -0.042*** -0.05*** -0.072*** -0.053*** 0.028** 0.013 0.021 -.050*** -.026** -0.035*** -0.051*** 

_cons 2.585*** 3.333*** 2.712* -1.325*** 2.60*** -1.448*** -1.25*** -2.66*** 6.622*** 6.44*** 7.016*** -6.65*** 

*** denotes 1% significance level; ** denotes 5% significance level; and * denotes 10% significance level. Source: Estimated by Author, 2022 
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Current Impacts of Climate Change on NFR: measures the impact of real CC on net-farm value. The real climate denotes 
the observed climate state during the ESS. Roughly, both the real BAU, erratic periods’, and shocks singly had a positive, 
negative and negative impacts. Similar to the historical climate, real climate revealed divergence against the 1st lag 
outcome but has higher levels of significance than the historical case. Both the real precipitation and temperature have 
largely shown negative impact on net-farm values.  

The rate of growth of divergence term at steady state were 2.9%, 2.7%, 2.6%, & 3.1% serially during ESS, ESS1, ESS2 

and ESS3. This shows the widening of income inequality among HHs. A 1% increase in real rainfall reduced NFR at 0.5%, 

0.4%, 0.5%, and 0.9%%; and that of real temperature reduced NFR at 3.2 %, 3.1%, 3.2 %, & 3.4% during the same period. 

Relatively the real climate has negative and greater impact than its historical counterpart. The combined impacts of real 

climate shocks have declined NFR at 8.5%, 7.7%, 8.4%, and 8.9% within the stated periods. Also, the joint index of the 

historical and real climate [IPT_HC & IPT_RC] climate shocks had shown negative and significant impact but at different 

rates. The above findings indicated that the historical, irregular periods’ and shocks were significantly affecting NFR 

from different directions. The historical climate had a positive impact, & current extreme & shocks shown negative 

impacts. 

The long-term, short-term and seasonal anomalies show an increasing effect on net-farm return. That is the impact 

severity declines with time length considered. On average, the shorter the time period, the higher the impact would be 

and vice versa. In other words, the longer the time length, the smaller the magnitude of climatic impacts and vice versa. 

Conceptually, the result is consistent with some empirical [58; 7; 23; 48;49; 52; 55] findings. As conclusion, CC poses a 

regressive duration impact overtime, mixed spatial, farm, and HHs effects against net-farm values. 

Seasonal Impacts of Climate Change on NFR: assessed the historical and current seasonal climate variability revealed a 
negative net-farm return [NCR, NLSR & NFR]. While past BAU estimates had shown mixed impact [positive-normal and 
negative-shock periods]; the current BAU statistics have a larger negative effect. In table 6, the BAU precipitation and 
temperature serially had a significant & non-significant response; yet the real precipitation & temperature presumed 
negative & significant effect. Among four major seasons, the first [summer] & the fourth [spring] seasons had negative 
effect on net-farm return. While summer season covers months from June to August; spring season contains March to 
May. Under normal case, summer and autumn seasons are the highest rainy seasons in Ethiopia; but the spring season 
has occasional showers. Change in climate during these seasons determine crop and livestock production, its return & 
the farming livelihoods. Since Ethiopia is located in the tropical zone lying between the equator and the tropic of cancer, 
these [1&4] seasons are vital for farming livelihoods. The result confirms some [58;33;50] evidences. 
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Table 5 Historical and Current Impacts of Climate Change on Agricultural Production [Net-Farm Revenue] among HHs 

Variables 
NCR [Net Crop Revenue] NLSR [Net Livestock Revenue] NFR [Net-Farm Revenue] 

ESS ESS1 ESS2 ESS3 ESS ESS1 ESS2 ESS3 ESS ESS1 ESS2 ESS3 

The Historical Impacts 

L. dv 0.038*** 0.035*** .034*** 0.032*** 0.046*** 0.042*** 0.043*** 0.035*** 0.026*** 0.032** 0.022** 0.041** 

PH 0.0002** -0.0002* 0.001** -0.03** 0.0001*** 0.003** 0.002* -0.0002* 0.002** 0.003*** 0.0031*** 0.0024*** 

TH 0.056*** 0.055*** 0.0148 0.023** 0.017** 0.015 0.055*** 0.055*** 0.027** 0.028*** 0.029*** -0.030*** 

PH1 0.006*** 0.006*** 0.006*** 0.005 0.005*** 0.006*** 0.006*** 0.006*** 0.006 0.001 0.008 0.001 

TH1 0.0003 -0.005 0.091*** .025** .091* 0.091*** -0.005 -0.005 0.021** 0.026 0.026 0.026 

PH2 -0.005* -0.005 -0.015*** -0.05** -0.014** -0.015*** -0.005* -0.005 -0.004 -0.004 -0.004 -0.004 

TH2 -0.112 -0.092 -0.198** -0.166** -0.243** -0.198** -0.092 -0.092 -0.154** -0.163** -0.163*** -0.163** 

PH3 -0.002** -0.002** -0.003** -0.053** -0.003*** -0.003** -0.025** -0.002** -0.0055** -0.005** -0.006** -0.008** 

TH3 -0.077* -0.063* 0.113** -0.091** 0.1612* -0.113* -0.063* -0.063* -0.080** -0.075 -0.082** -0.083 

CP_HP -0.003** -0.003*** -0.001*** -0.06*** -0.001** -0.001** -0.003*** -0.003*** -0.004*** -0.007** -0.006*** -0.008** 

CT_HT -0.024* -0.02** -0.001 -0.004 -0.0027* -0.00** -0.021** -0.02** -.005** -0.006** -0.006** -0.007** 

IPT_HC -0.05** -0.03*** -0.04*** -0.07*** -0.045** -0.02** -0.03*** -0.05*** -0.05*** -0.04** -0.05*** -0.06** 

The Current Impacts 

L.dv 0.046*** 0.038*** 0.038*** 0.045*** 0.059*** 0.046*** 0.046*** 0.038*** 0.029*** 0.027** 0.026** 0.031** 

PC -0.002*** -0.002*** -0.002*** -0.093** -0.003*** -0.004*** -0.004*** -0.002*** -0.005** -0.004** -0.005** -0.009** 

TC -0.077** -0.078*** -0.078*** -0.047*** 0.015** 0.0078 -0.008** -0.078*** -0.032*** -0.031*** -0.032*** -0.034*** 

Pw1_CP 0.002*** -0.002*** 0.002** -0.003*** -0.002*** 0.001 -0.002** -0.002*** 0.001*** -0.001** -0.001** -0.001** 

Pw2_CP 0.002*** -0.002*** 0.002** 0.004*** -0.002*** 0.003*** -0.002*** -0.002*** 0.003*** 0.003*** 0.003*** 0.003*** 

Pw3_CP -0.002*** -0.002*** -0.003*** -0.003*** -0.002*** -0.001*** -0.002*** -0.002*** -0.001*** -0.009*** -0.006*** -0.009*** 

Tw1_CT -0.100*** -0.046** -0.098*** 0.001 -0.037*** 0.012 -0.046** -0.046** 0.01 0.012 0.011 0.012 

Tw2_CT -0.078*** -0.024 -0.082*** 0.034*** -0.013 0.042*** -0.024 -0.024 0.042*** 0.042*** 0.042*** 0.042*** 

Tw3_CT -0.014* -0.033 -0.018 0-.056*** -0.025*** 0.044*** -0.033 -0.033 -0.046*** -0.044*** -0.043*** -0.044*** 

IPT_RC -0.085** -0.066*** -0.084*** -0.098*** 0.0835** 0.061 -0.079** -0.087*** -0.085*** -0.077*** -0.084*** -0.089*** 
*** denotes 1% significance level; ** denotes 5% significance level; and * denotes 10% significance level. Source: Estimated by Author, 2022 
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Table 6 Seasonal Impact of Climate Change on Smallholder Agricultural Production [Net-Farm Revenue] among HHs 

Variables 
ESS ESS1 ESS2 ESS3 

NCR NLSR NAGR NCR NLSR NAGR NCR NLSR NAGR NCR NLSR NAGR 

The Historical Impact 

L1. 0.032*** 0.031*** 0.024*** 0.032*** 0.046*** 0.024*** 0.031*** 0.045*** 0.024** 0.032*** 0.045*** 0.021*** 

PH_BAU 0.0025** -0.003*** -0.005*** -0.006*** -0.0003 0.002** -0.003*** -0.003*** 0.003*** -0.006*** -0.002*** -0.006*** 

TH_BAU 0.047*** 0.034*** -0.031** -0.060** 0.020*** 0.024*** 0.034*** 0.018** 0.025** -0.060** -0.014** -0.004** 

PH_ Wi -0.013** -0.009*** -0.006*** 0.015*** -0.002** -0.003** -0.009*** -0.003*** -0.004** 0.015*** -0.001*** -0.006*** 

PHS1_Wi -0.007*** -0.002*** -0.0025** 0.011** -0.0003 0.001** -0.002*** -0.0008** -0.001** 0.011** -0.001** -0.0035** 

PHS2_Wi -0.003** 0.010*** 0.006** 0.004 0.0006 -0.0003 0.010*** 0.006 -0.004** 0.004 0.001 0.006** 

PHS3_Wi -0.004*** 0.006*** -0.0003 -0.002** -0.0005 0.001 0.006*** 0.0008 0.003*** -0.002** 0.001 -0.0003 

PHS4_Wi -0.008** 0.008*** -0.003** -0.0014** -0.002*** -0.001*** 0.008*** 0.0003 -0.002** -0.0014** -0.001** -0.004** 

TH_Wi 0.021** -0.158*** -0.0048*** -0.024*** -0.049 -0.004** -0.158*** -0.045** -0.0025*** -0.024*** -0.051*** -0.0048*** 

THS1_Wi 0.057 -0.054* -0.0325** -0.011** 0.035 -0.021 -0.054* 0.023 0.009 -0.011** -0.036** -0.0425** 

THS2_Wi 0.129*** 0.117*** -0.037 -0.222*** 0.01 -0.006 0.117*** 0.019 0.01 -0.222*** -0.009 -0.037 

THS3_Wi -0.168*** 0.016 -0.066* -0.031 0.002 -0.002 0.016 -0.009 -0.007 -0.031 -0.047 -0.066* 

THS4_Wi -0.056 0.048* -0.05** -0.018** -0.0002 -0.041** 0.048* 0.008 -0.03 -0.018** -0.031** -0.06** 

The Current Impact 

L1. 0.033*** 0.032*** 0.025*** 0.034*** 0.055*** 0.024*** 0.032*** 0.046*** 0.027*** 0.034*** 0.047*** 0.034*** 

PC_ Wi -0.005** -0.008*** -0.055*** -0.005*** -0.003*** -0.026*** -0.008*** -0.001** -0.032** -0.005*** -0.004** -0.06*** 

PCS1_Wi -0.006*** -0.002*** -0.06*** -0.0015*** -0.0003** -0.0005** -0.002*** -0.0007** -0.001** -0.0015*** -0.0025*** -0.06*** 

PCS2_Wi -0.006*** 0.01 -0.003* 0.007*** -0.003*** 0.006*** 0.01 0.001 -0.003** 0.007*** 0.0005 -0.003* 

PCS3_Wi 0.0045*** 0.006*** -0.003*** 0.002** -0.0007 0.0025*** 0.006*** 0.0008* 0.003*** 0.002** -0.0007* -0.003*** 

PCS4_Wi -0.0013** -0.007*** -0.055*** -0.001*** -0.001*** -0.0007** -0.007*** -0.0004** -0.001** -0.001*** -0.026*** -0.002*** 

TC_Wi 0.073** -0.138*** -0.110*** -0.0496** 0.003** -0.092*** -0.138*** -0.041** -0.101*** -0.0496** -0.024** -0.118*** 

TCS1_Wi -0.006** -0.045* -0.048*** -0.026*** -0.066*** -0.059*** -0.045* -0.020* -0.004** -0.026*** -0.016*** -0.041*** 

TCS2_Wi -0.057* 0.102*** -0.004** -0.025** -0.008 -0.078*** 0.102*** 0.02 0.011 -0.025** -0.045*** -0.0004** 

TCS3_Wi 0.057** 0.01 -0.019 -0.011 -0.057*** 0.041*** 0.01 -0.008 -0.005 -0.011 -0.005 -0.019 

TCS4_Wi -0.197*** -0.041** -0.11 -0.052*** -0.015** -0.111*** -0.041** -0.09** -0.003** -0.052*** -0.008*** -0.050*** 
*** denotes 1% significance level; ** denotes 5% significance level; and * denotes 10% significance level. Source: Estimated by Author, 2022 
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In sum, the seasonal variation involves greater impact on farm value than the short-term and the historical climate 
shocks in that order. Specially, during tESS3, both the historical and real rainfall and temperature have affected 
negatively at different levels of significance [5% & 1%]. 

For specific terms, the positive sign in the first lag of NFR [L1] shows divergence overtime. The growth of lagged 
outcome was increasing at steady state level, which could widen the inequality among HHs when the cost of climate is 
increasing overtime. The spillover effects progressively aggravate the initial gap; later on, worsening vulnerability and 
poverty. Both the historical and real climate shown positive coefficients for all L1; that is even under CC pervious 
periods’ output contributes to the current values and net-returns. Evidently, the BAU climate had affected NFR each 
2.4% during the ESS, ESS1 and ESS2; but 2.1% for ESS3.  

Mostly seasonal climates negatively affecting NFR mainly during the erratic periods [ESS3]. The historic seasonal 
precipitation [PHS_BAU] reduced NFR serially at 5% [ESS] & 6% [ESS3], while the historic temperature [THS_BAU] 
declined NFR at 3.1% [ESS] and 4% [ESS3] serially. The summer historic precipitation affected NFR at -0.25%, 0.1%, -
0.1%, and -0.35% in order during ESS & the 3-ESS waves; and the spring historical rainfall declined NFR at 0.3%, 0.1%, 
0.2% & 0.4 % during these periods. The corresponding summer temperature had reduced NFR at 3.25%, 2.1%, 0.9% 
and 4.25%; and that of spring temperature decreased output by 5%, 4.1%, 3%, and 6%. The impact of seasonal climate 
found to be greater in magnitude than the BAU and real climate risks specially during irregular periods.  

Like the historical climate, the real climate has a positive impact on the lagged NFR overtime. The rate of growth of NFR 
deviation were 2.5%, 2.4%, 2.7%, and 3.4% serially thru ESS, ESS1, ESS2 &ESS3. A 1% change in real climate, mostly 
involved negative and significant impact on net-farm earrings. The marginal change in real seasonal climate put larger 
impact on farm-return. The real seasonal precipitation [PCS_Wi] reduced NFR at 5.5%,2.6%,3.2%, and 6%; the real 
seasonal temperature [TCS_Wi] decreased NFR at 11%,9.2%, 10.1%, and 11.8% during ESS and its waves. The summer 
and spring climate shocks shown negative effects with variable rate. Summer and spring climate decreased the NFR 
from 6%-5.5% [perp] and 4.8%-11% [temp] among HHs per year during ESS. Seasonality significantly affects NFR; the 
summer [S1] and spring [S4] seasons involve negative and greater impact than the autumn [S3] and winter [S3] seasons 
do. Increase in rainfall & temperature during dry season’s rise NFR the reverse is true for wet seasons (17;19; 30; 44]. 
In general, CC involves an increasing impacts overtime [future> present> past]; declining effect along time duration 
[short>medium>long]; fastest, larges, and significant impact during shock periods. These above results are consistent 
with theoretical and empirical evidences [23;38;39; 44;48;55;56;58;59]. 

4 Conclusion 

Th current study has analyzed the integrated impacts of climate change on agricultural production among smallholder 
panel HHs across Ethiopia via Ricardian panel model with random effects. As response to the inconclusive empirical 
evidences, the factor elasticity, the historical, current, and seasonal impacts was analyzed using the representative 
Ethiopian socioeconomic survey [ESS] panel data; merged with 60 years precipitation & temperature by integrating the 
temporal, spatial, and unit effects among 14,333 HHs, three-farm types and 11- regional states of Ethiopia. 

Climate change impacts agricultural livelihoods thru affecting farm production. It imposes a net-negative, increasing 
and significant impact on factor elasticity and net-farm revenue impacts; a progressive temporal; regressive duration; 
mixed regional, farm, HH impacts; and divergence growth effects of net-farm returns. Incessantly, shocks, seasonal, 
current, and historical climate states put greater impacts on farm values. The joint historical, current and real seasonal 
climate serially reduces NFR; the summer and spring climate variability reduces NFR. While classical productive factors 
and institutions show negative sign; adaptation remains positive to farm values. The context-relevant adaptation 
involves positive impact. The historical, real & seasonal climate induces ever growing impact on factors and farm values. 

Therefore, the following recommendations are suggested towards enhancing sustainable agricultural livelihoods: 

 Conduct an integrated climate impact assessment which augments both the institutional, socioeconomic, and
environmental dimensions grasping the temporal, spatial, and unit-specific factors. Both the historical, current,
and seasonal impact inquiries would be an issue of survival yet varied across regions; farms; and households.

 Apply climate smart resource allocation and utilization through joint efforts coordinated among the state and
non-state actors to boost productive capacity and maximum gain from farm return.

 Build an integrated agricultural production and development system either to adapt, reduce or reverse the
ever-increasing climatic impacts thereby increase production, output and net-revenue.
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More generally, the government and people need to institutionalize sustainable livelihoods framework-ISEE through 
prioritizing the seasonal, current and historical climate shocks in a way that can reduce or reverse the matching risks, 
maintain production, productivity, and improve welfare overtime even under changing climate system. 
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