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Abstract 

A new deterministic susceptible-exposed-infectious-vaccinated-removed-pathogen (SEIVRB) cholera epidemic model 
with combined mass action incidence and saturated incidence rates is proposed and analyzed. A threshold level of 
vaccine coverage necessary for controlling or eradicating cholera has been determined and analyzed using the next 
generation matrix approach. It is shown that the higher values of vaccine coverage that are lower than the threshold 
value significantly reduces the number of infected individuals whenever basic reproduction number is less than unity, 
and the cholera would persist in the populations whenever the model basic reproduction number exceeds unity. The 
global stability for cholera free equilibrium state and cholera endemic equilibrium state of the model system is 
investigated using Lyapunov functional approach and Lasalle invariance principle, which are found to be globally 
asymptotically stable at both equilibrium states. Numerical simulations and graphical illustrations is presented to 
support the analytical results found in the study. 

Keywords:  Cholera; Saturated Incidence rate; Lyapunov function; Global stability; Reproduction number; Oral 
cholera vaccines 

1. Introduction

Civil unrest and political crisis are responsible for approximately 1.3 billion people being at risk of cholera in endemic 
countries. It was reported that estimated 2.86 million cholera cases occur annually in endemic countries, in which most 
of the disease global burden is in sub Saharan Africa (60%) and South – East Asia (29%). Among these cases, there are 
an estimated 95 000 deaths [1]. About half of the cholera cases and deaths are estimated to occur in children under 5 
years of age, but any age group may be affected. Cholera is an acute intestinal infection caused by ingestion of food or 
water contaminated with the bacterium Vibrio cholera 01 and 0139. It is a disease of poverty, closely linked to poor 
sanitation and lack of clean drinking water which mostly are the consequences of the unrest. It has a short incubation 
period of a few hours to five days, and is characterized in the majority of cases by acute, profuse watery diarrhea lasting 
from one day to a few days. In its extreme form, cholera can be rapidly fatal [2, 3, 4]. The disease occurs in both endemic 
and epidemics patterns. The method of transmission is by direct or indirect fecal contamination of water or food 
supplied by soiled hands, utensils or mechanical carrier such as flies [5].  

In 2013, the WHO established an OCV stockpile. Vaccination is the most effective method of preventing infectious 
diseases; widespread immunity due to vaccination is largely responsible for the worldwide eradication of the diseases, 
for instance, in 1979 smallpox was the first infectious disease to be eliminated completely. The second eliminated 
disease was in 2010 a viral disease found only in cattle known as Rinderpest. Furthermore, viral diseases known as 
measles, polio and tetanus have nearly been eliminated from much of the world [6]. The number of cholera cases 
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reported to World Health Organization was alarming. It was in 1885, the first development of a whole – cell injectable 
vaccine for cholera disease was made. Since that period, several vaccines were developed to control the outbreak and 
spread of diseases as well as total eradication of various infectious diseases [1]. Presently, there are three WHO pre-
qualified oral cholera vaccines (OCV) as a game-changer in the fight against cholera. OCV takes effect immediately and 
works to prevent cholera for 2-3 years, effectively bridging emergency response and longer-term cholera control with 
a WASH focus. Dukoral (in 2001), Shanchol (in 2011), and Euvichol (in 2015). All three vaccines require two doses for 
full protection. Dukoral can be given to all individuals over the age of 2 years. There must be a minimum of 7 days, and 
no more than 6 weeks, delay between each dose. Children aged 2-5 years require a third dose. Two doses of Dukoral 
provide protection against cholera for 2 years. Shanchol and Euvichol are essentially the same vaccine produced by two 
different manufacturers, they are given to all individuals over the age of one year. However, there must be a minimum 
of two weeks’ delay between each dose of these vaccines. Two doses of Shanchol and Euvichol provide protection 
against cholera for 3 years, while a single dose provides short term protection. To date, over 54 million doses of OCV 
have been delivered in 25 countries [7, 8,  9, 10].   

In modeling, the transmission dynamics of infectious diseases, nonlinear incidence rates have played a significant role 
in certifying that the models establish reliable description of the disease dynamics.  The commonest incidence rates 

such as Mass action law, with the form ( ) ( )S t I t , the standard incidence with the form 
( ) ( )S t I t

N


,  the saturated 

incidence with the form 
( ) ( )

( )

S t B t

k B




 as well as separable incidence [11], have been applied to model cholera epidemics 

by many researchers to understand the dynamics of the disease [12].  

Cholera dynamics is termed to have complexity in nature with both direct transmission (human to human) and indirect 
transmission (environments to human). In transmission dynamics of cholera diseases using both mass action and 
standard incidence functions would not be sufficient, because there are diverse biological mechanisms which may result 
in nonlinearities in the cholera transmission rates, a number of authors (see, for instance, [13, 12]) have employed a 

nonlinear incidence (saturated) function of the form, 
1 B

SB


, to describe the transmission and spread of cholera disease. 

The need for the saturated incidence in cholera model is to describe the fact that the number of effective contact between 
susceptible and infectious individuals may saturate at high infective level due to the crowding of the infectious 
individuals (pathogens and humans) in the population or due to the precautionary measures (behavioral changes) 
exhibited by the susceptible individuals against the resurface of the disease. One of such precautionary measures by the 
susceptible, is the ability to provide measures to curtail the spread of the disease, such as hygiene and total sanitation 
reduce the amount of Vibrio Cholerae bacteria in the environment. In this work, we use a saturated incidence of the 

form 2

1 1
1

B
IS VS

B


 


 


 to denote a saturating feature that inhibits the force of infection from unhygienic 

environments to susceptible humans.   

Lyapunov is a Russian mathematician which in 1892, developed a method for the analysis of the stability of ordinary 
differential equations. The method employs an appropriate auxiliary function, called a Lyapunov function. In recent 
years, Lyapunov's method becomes an important tool which has been used to establish the local and global stability of 
equilibrium in various forms of models arising in Mathematical biology and Mathematical epidemiology [14]. There are 
no standard methods for constructing Lyapunov functions in epidemiological models with saturated incidence rate and 
therefore it is often difficult to construct Lyapunov function [15].  

In recent literatures on Lyapunov function with mass action incidence to study global stability for epidemiological 
model includes [16, 17]. The standard incidence was used in the construction of Lyapunov function by [18, 19] to study 
global stability for different models. The saturated incidence rate was used by [20, 21] to investigate global stability and 
dynamics of a models. 

The study extended the work of Lawal and Sule [21] and applied the mathematical analysis on the work of [22], by using 
the approach of Korobeinikov [23] as first used by Goh Volterra in his work to study the stability of a predator-prey 
ecosystem [24]. We define a Lyapunov function as: 
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. 

This paper was organized into sections as follows: Section 1 briefly discussed the role of incidence rates in the 
mathematical modeling of cholera disease. Section 2 presents the model formulation and description of the cholera 
carrier. Qualitative analysis and the model basic properties, as well as global stability behavior, are discussed in section 
3. The model is simulated and plotted to support the analytical results obtained in section 4. The conclusion and 
references are given in section 5.  

2.  Model Formulation 

The study consider a human population  HN t divided into compartments of susceptible, exposed, infectious, 

vaccinated, and removed individuals, with numbers at time t denoted by  S t ,  E t ,  I t ,  V t  and  R t  

respectively, that is            HN t S t E t I t V t R t     . The pathogen population  BN t  at time t denoted by 

 B t .  

The following assumptions were considered to design the vaccination model of cholera carrier: 

 Population have equal access to vaccination. 

 Using combine incidence rates of the form 2

1 1
1

B
IS VS

B


 


 


 

 re-infection of vaccinated individual may occur. 

 modification parameter to reduce the shedding rate of vaccinated individuals. 

Using mentioned assumptions, the below model equations are established showing the interaction between different 
populations: Thus, the model formulation is governed by the following system of nonlinear differential equations as 
presented by [22]: 

  2

1 ( ) ( )
1

BdS
S t S t

dt B
I V


  



 
     



  ………… (1) 

     2

11 ( ) ( )
1

BdE
S t E t

B
I V

dt


   




 
     


  ………. (2) 

  2

1 1( ) ( ) ( ) ( ) (3)
1

BdI
S t E t I t

dt
I

B
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
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   2 ( )
dV

I t V t
dt

         ………(4) 

     1 2I t
dR

R
d

t t
t

V      ……… (5) 

     1I t
dB

B t
dt

V t     ……… (6) 

Subject to the initial conditions  

     

     

0 0 0

0 0 0

0 , 0 , 0

0 , 0 , 0

S S E E I I

V V R R B B
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
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……… (7) 
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Table 1 Description of Variables used in the Vaccination Model Simulations 

Variable Description 

( )S t  Susceptible Individuals 

( )E t  Exposed  Individuals 

( )I t  Infective  Individuals 

( )V t  Vaccinated  Individuals 

( )R t  Removed Individuals 

( )B t  Pathogen  Individuals 

 

Table 2 Description of Parameters and their values used in the Vaccination Model Simulations  

 

3. Mathematical Analysis 

3.1 Basic Properties of the Model  

The model system describes the dynamic of the Vaccination Model of the Cholera Epidemic with Non-linear Incidence 
of Infection. Before analyzing the dynamics of the model presented by, [22] we briefly discuss the basic properties of 
the model system (1-6). Though, the model monitors changes in the human population, therefore it is assumed that all 
the model variables and parameters to be nonnegative for all, 0t  . 

Parameters Description Value Source 

  Modification Parameter 0 1  Varied 

  Natural death  0.2  Estimate 

1  Force of infection in human susceptible 0.05  Estimate 

2  Force of infection in pathogen 0.05  [25] 

1  Modification parameter associated with vaccinated reduced failure 0.001 Varied 

  Fast progression rate 0 1  Varied 

  Shedding rate 0.01 [25] 

  vaccine rate 0 1  Varied 

1  Natural recovery rate 0.2  [26] 

2  Vaccine recovery rate 0 1  Varied 

  Modification parameter associated with reduced mortality 0.05  Estimate 

  Decay of vibrio 0.02  Estimate 

  Saturation constant 0 0.02  Varied 

  Progression rate E to I  0.3  Estimate 

  Induced death 0.015  [27] 

  Recruitment 0.6  Estimate 
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3.1.1 Positivity of Solutions 

It is assumed that all the variables and parameters of the model are non-negative. By adding up the equations of the 
model system (1-6) we obtain 

 
   8

dN t
N t

dt
    

We claim the following results 

3.2 Theorem 1 (Positivity)  

Let,            6, , , , , : 0 0, 0 0, 0 0, 0 0, 0 0, 0 0S E I V R B R S E I V R B
           , then the solutions set of 

            , , , , ,S t E t I t V t R t B t , of the vaccination model system  1 6 with non-negative initial conditions (7), 

remains non-negative for all  0t  .  

Proof.  Given that the initial conditions            0 , 0 , 0 , 0 , 0 , 0S E I V R B are non-negative. It is observed that from 

the first model equation we deduce that for all,  0t  .   

   2

1 ( ) ( ) 9
1

I V
BdS

S t S t
dt B


  




 
   

 
   

Then, 

   10
dS

S t
dt

    

On solving we get 

   11tS t k 



   

Applying initial condition, we get 

   0 0 12tS t S  

 

 
    

 
 

Where, 
0S is the population of susceptible individuals at, 0t  . Similarly, the remaining five equations are obtained that 

         0 , 0 , 0 , 0 , 0 0.E I V R B  Therefore, we establish that any solution of the vaccination model system  1 6 is 

such that,    6, , , , ,S E I V R B R .  

Theorem 2 (Boundedness)  

All solution of model system  1 6  is bounded and remain in the region, N .  

Where,  

                 6, , , , , : 0 13N S E I V R B R S t E t I t V t R t B t





 
          

 
 

Proof: From equation (5) the total human population  

             14HN t S t E t I t V t R t      

This implies that, 

   15H

H

dN dS dE dI dV dR
N I V

dt dt dt dt dt dt
             

In the absence of cholera infection, there is no death from cholera, that is, 0  , then we obtain 

 
   16

H

H

dN t
N t

dt
    
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By integration and simplifying and applying comparison theorem as presented by [28], we get 

       0 1 17t t

HN t N  



     

As t  , the total human population size 
HN approaches 0 H HN N

 

 
    . Therefore, the feasible solution 

set of the human population for the system (1-5) enters the region 

              5, , , , : 0 18H S E I V R R S t E t I t V t R t





 
         

   

Similarly, the pathogen population for any solution set in 1B . Let  

       1 19BN B I t tt BV      

But, , HI V N and HN



 then 

   11 20BN B

  


    

Then, 

 
     11 21

BdN t
B t

dt


  


    

By standard comparison theorem, we obtain 

 
 

   11
1 22t

BN t 
 






   

As t  , the total pathogen population size BN  approaches 

 
 

 11
0 23BN t

 




   

This indicates that the feasible solution set of the pathogen population enter into the region, B .  

 
 11

1
: , 0 24B BB B N where

 





  
     

  
 

Therefore. The solution of the model  1 6  with the initial condition (7) is bounded in the invariant region, N for all 

0t  . Hence, the model is well posed. 

3.3 Equilibria Points and Basic Reproduction Number 

At each of the equilibrium points of the model,  1 6 ,   

 0 25
dS dE dI dV dR dB

dt dt dt dt dt dt
       

Thus, the following results are establishing.  

3.3.1 Cholera Free Equilibrium 

At the Cholera free state, there is no Cholera disease in the human population which implies, 0E I B   . 
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Thus, the Cholera free equilibrium of the model  1 6  is given by  

     0 0 0 0 0 0 0, , , , , , 0, 0, 0, 0, 0 26p S E I V R B S   

With,  
S






      

3.3.2 Endemic Equilibrium 

There are arbitrary small Cholera infections that will not disappear in the population. Thus, there is an equilibrium point 

 , , , , ,S E I V R B       with , , 0E I B    such that,              N t S t E t I t V t R t B t            .  

However, on algebraic manipulation we obtained the following results for endemic equilibrium point of the model, 

 1 6 . 

 
0

28S
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

   

  
 0

0 1

1 1
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R Q

  




 
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  
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32

L R Q
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R Q Q Q

  




 
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 
 1 0

0 1 2 3

1
33

L R
B

R Q Q Q

 

 



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Where,  1 2 1 3 2

1 3 2 1 2 2 1 3 3

, , ,
34

, , 1

Q Q Q

L Q L L L Q L L

        

     

         


      
 

3.4 Reproduction Number 

The basic reproduction number 0R as defined by Diekmann [29] is the expected number of secondary cases produced, 

in a completely susceptible population, by a typical infected individual during its entire period of infectiousness. Using 
the method of next generation matrix explained in details by [30] and applied by [31]. Thus, the basic reproduction 

number of the model system  1 6  with mass action incidence function denoted by 0R is the spectral radius of 1FV  . 

Let,  

  iF x be the rate of appearance of new infection in compartment i . 

  iV x be the transfer of individuals into compartments i  by all other means. 

  iV x be the rate of transfer of individuals out of compartments i . 

 0P  be the disease free equilibrium point. 
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Thus, the basic reproduction number of the model system  1 6  with mass action incidence function denoted by 
0R is 

the spectral radius of 1FV  . 

Let,  

     
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1 1 2

1 1 2
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0 35
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 

,          

1

2

3

1

0 0 0

0 0
36

0 0

0

Q

Q
V

Q




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 
 
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  
 
   

 

 

Thus, the set of eigenvalues corresponding to the product to matrix, 1FV  , and in which the dominant eigenvalue is the 

basic reproduction number,  
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Where,  

   1 1 1 2 1 3 21 , , , 38A Q Q Q Q                      
 

Theorem 3 

The cholera free equilibrium,  
0p  of the model system  1 6  is locally asymptotically stable if 

0 1R  , and unstable if 

0 1R  .  

3.4.1 Biological remarks 

The epidemiological implication of the above result is that cholera epidemic governed by model equations (1-6) can be 
eliminated from the population whenever an influx by infectious individual into the population is small such that 0 1R 

In a disease with recovery with any initial population size, if the susceptible (and infected) reproduction ratio is less 
than unity, then the total population eventually disappear and it persists if otherwise. 

4. Stability analysis 

4.1 Global Stability of the Cholera free equilibrium for the vaccination epidemic model 

We claim the following result: 

Theorem 4 

The Cholera free equilibrium is globally asymptotically stable whenever, 0 1R  . 

Proof.  Consider the following Lyapunov function  

 1 3 11 1

3

1 2 3 2 3 3
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Where 
   1 1 3 2 3 1A Q Q        

 

With Lyapunov derivative (where a dot represents differentiation with respect to t )  
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Where,   2
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Simplifying with 
1

S
B

S 

 
 


,  We get, 

     1 2 0 1 43L I V B R          

Thus, 0L   if 
0 1R   with 0L   if and only if 0I V  . Substituting in 0I V   in  1 6  shows that   0B t  as 

t   as S



  as t  . Further, the largest compact invariant set in 

                          , , , , , : , , , , , 0S t E t I t V t R t B t L S t E t I t V t R t B t 
 

is the singleton 
0P . It follows from LaSalle’s Invariance Principle [32] that every solution to the system  1 6  with 

initial condition in   converges to the Disease-Free Equilibrium as t   whenever
0 1R  . Hence, it is Globally 

Asymptotically Stable as             , , , , , , 0, 0, 0, 0, 0S t E t I t V t R t B t




 
  

 
 as t  . 

Remarks: thus, the epidemiological implication was that the infected fraction (the sum of the exposed and the 
infectious fractions) of the population vanishes in time so the Cholera dies out. 

4.2 Global Stability of the Endemic Equilibrium Point E  of the Vaccination Model of a Cholera Carrier: 
Special case 

The analyses in this section will be carried out for the special case of the model with no fast progression rate of 
susceptible to infective class, no saturation constant and no Modification parameter associated with reduced mortality 

of vaccinated individuals.  The model equation for the special case, setting 0     in  1 6  to obtain  
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Thus, 
0R  at special case is given as:  
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At endemic steady state, it yields 
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Using the approach of Korobeinikov [22] of the following non-linear function, we define a Lyapunov function as  
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 with Lyapunov derivative given by 
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With simplification, to obtain 
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And with further simplification, we get 
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Hence, for 
0 1R  , 0L  , where 0L   holds only when * * * * *, , , ,S S I I E E V V B B     . Further, the only largest 

invariant set in   , , , , : 0S E I V B L  is reduced to the endemic equilibrium. Hence,  , , , ,S E I V B is attractive. 

Because of LaSalle’s invariance Principle [32], the endemic equilibrium *E of system  1 6  is Globally Asymptotically 

Stable in the interior  .  

The epidemiological implication of Theorem 5 is that cholera can persist in the population whenever the intervention 
strategies are not adhered to and the associated basic reproduction is greater than one. 

Theorem 5 

The unique endemic equilibrium of the reduced model  1 6 , with 0     , is Globally Asymptotically Stable in 

the interior   whenever  0 1R  . 

5. Numerical Simulations 

The numerical analysis of the theoretical result obtained in the proposed model is presented. This is achieved by using 
the set of parameter values given in Table 1, and whose sources are mainly from literature as well as assumptions 

satisfying the stability conditions. The proposed vaccination model system  1 6  was simulated using Maple software 

with different initial population size as follows: 
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         

1. S 0 1.5;  E 0 0.6; I 0 0.48;  V 0 0.27;  R 0 0.15;  P 15

2. S 0 2.0;E 0 0.5;  I 0 0.15;  V 0 0.3;  R 0 0.05;  P 20
5

3. S 0 1.4;  E 0 0.55; I 0 0.46;  V 0 0.3;  R 0 0.29;  P 10

4. S 0 2.15;E 0 0.35;  I 0 0.25;  V 0 0.2;  R 0 0.15;  P 8

      

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 1  

5.1 Numerical Results on the Global Stability of the Vaccination Model of Cholera Carrier, when, 0 1R  . 

In Figure 1 (a-f), the time plot of model in section 5 was presented to verify the theoretical results of the vaccination 
model, this was achieved by using set of parameter value given in Table 2, for ρ = 0.2; η = 0.001; α = 0.8; γ2 = 0.5 for 

0 1R   = 0.9129 < 1. Figure 1 (a) shows that the population of susceptible individual  S t  increase to approach S  (i.e.π 

µ = 0.6 0.2 = 3). In Figure 1 (b), shows that the population of the Exposed  E t  decrease to approach E   (i.e. zero). In 

Figure 1 (c), the population of symptomatic infectious,  I t decrease to approach I   (i.e. zero). In Figure 1 (d), the 

vaccinated individuals population  V t  decreases to approach V   (i.e. zero) to enter recovered population. In Figure 1 

(e), the recovered population  R t decreases due to temporary immunity to becomes susceptible again and approach 

R  (i.e. zero). In Figure 1 (f), the population concentration of vibrio cholera  B t also decrease at first then slightly 

approach B . 
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a.  b.  c.  

d.  e.  f.  

Figure 1 Time series simulations of the model  1 6 , showing the total number of populations as a function of time, 

with different initial conditions. Parameter values used are as given in Table 2, with 0 1R  . (a)  S t for 0 1R   (b) 

 E t for 0 1R   (c)  I t for 0 1R   (d)  V t for 0 1R   (e)  R t for 0 1R   (f)  B t for 0 1R  . 

5.2 Results on the Global Stability of the Endemic State of the Vaccination on Model of the Cholera Carrier, 
whenever, 

0 1R  . 

This section presents a numerical simulation of model in section 5, using a set of parameter values given in Table 2 with: 

1 1 20; 0; 0; 1; 0.8; 0.5; 1              for 
0 1R   = 3.1046 > 1. In Fig 2 (a), it was observed that, the population 

of susceptible individuals  S t  increase to approach, S . In Figure 2 (b) the population of exposed  E t  decrease at 

first then it steadily tends to approach, E . In Fig 2 (c) the symptomatic infectious population  I t  at first decrease, 

then steadily approach, I  . In Figure 2 (d) vaccinated population,  V t  at first decrease then tend to, V  . In Figure 2 

(e), the recovered population  R t  decrease at first then approach, R . In Figure 2 (f), the Pathogen population,  B t  

decrease at first then steadily tend to approach, B . 
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a.  b.  c.  

d.  e.  f.  

Figure 2 Time series simulations of the models (1-6), showing the total number of populations as a function of time, 

with different initial conditions. Parameter values used are as given in table 1, with 0 1R  . (a)  S t for 0 1R   (b) 

 E t for 
0 1R   (c)  I t for 

0 1R   (d)  V t for 
0 1R   (e)  R t for 

0 1R   (f)  B t for 
0 1R  . 

6. Conclusion 

The study is a six dimensional compartmental model designed to analyze the vaccination models for cholera 
transmission dynamics in a population. The model was rigorously studied and analyzed to understand the disease 
transmission dynamical features. The following results were established: 

 The model basic properties for positivity of solution and the invariant region are tested and were found to be 

epidemiologically and mathematically well posed.  

 A threshold level of vaccine coverage necessary for controlling or eradicating the disease has been determined 

using the next generation matrix approach. It has shown that higher values of vaccine coverage that are lower 

than the threshold value significantly reduces the number of infected individuals, but never lead to disease 

eradication. Disease eradication is only feasible if the vaccination coverage level exceeds the threshold value 

when the vaccination function is decreasing i.e. 0 1R  .  

 The stability behavior of the models was investigated using Lyapunov function approach and the models at the 

cholera free equilibrium were found to be asymptotically stable, whenever basic reproduction number, is less 

than unity and the cholera endemic equilibrium point occurred whenever reproduction number exceeds unity. 

 Lastly, the theoretical findings have been verified numerically, accuracy of results and the plots for simulations 

of the models were found to be in good agreement with analytical results. 

Therefore, to curtail the spread of cholera in communities, it is recommended that public health campaigns be conducted 
frequently as well as basic health services be provided and the vaccination against cholera should complement other 
preventive and control measures. 
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