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Abstract 

This study aims at providing a model prediction technique for the fatigue life of offshore steel risers using a hybrid of 
finite element analysis and the artificial neural network (FEA-ANN) model. A 200 days’ environmental load from 
Forcados sea state in West Africa offshore was used in training the FEA-ANN model to predict fatigue. The prediction 
result showed that the mean square error (MSE) was 0.3329 and the analysis from the regression was 0.9999. The result 
from the training showed a high performance and the regression analysis of the model was seen to be good. 
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1 Introduction 

Offshore steel risers are structures of steel for strength against environmental loads and are used to transport oil and 
gas from wellheads to the production facilities. The steel risers can be used in many types of configurations (steel 
catenary risers, hybrid risers which are combinations of flexible and steel risers etc.). They are considered as critical 
elements of the subsea transportation from the resource site to the oil and gas industrial facilities in offshore 
environment. It is noted that catastrophic failures of steel riser components can be caused by fatigue crack growth. 
Fatigue-life prediction of offshore steel risers has become a major issue to ensure the integrity and reliability. 

Fatigue is a phenomenon that is used to describe a condition of structural damage that occur as a result of cyclic loading, 
this damage occurs mainly at stress values that are lower than the yield stress limit and ultimate tensile stress, (Ozgue, 
2016). Steel risers are commonly affected by cyclic loadings from currents and waves motions during their period of 
operation. These fluctuated loadings can initiate or extend cracks in the material (Agbakwuru et al., 2016). The result 
in fatigue crack growth of offshore steel risers can be a serios safety and critical concern as the structure is primarily 
used to carry oil and gas. More so, the steel risers do encounter harsh and extreme working conditions, therefore, failure 
during their service life needs to be considered. One of the most significant failure modes in offshore riser structures 
according to Elsevier Ocean Engineering Series (2001) is due to fatigue which occurs as a result of accumulated damage 
from mainly two factors: 

i. First-order wave loading
ii. Vortex-induced vibrations (VIVs) due to current

It is noted that case (ii) the nonlinearity of system can be very large, particularly around the critical touch down point. 
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Several experimental and numerical research work on fatigue failure of pipelines and risers can be found. Zhang et al. 
(2018) carried out an experiment on the crack growth of carbon steel under a wide range of loadings. Holtam et al. 
(2010), experimentally investigated the effect of sour environment on fatigue crack growth rate of carbon steel with 
grade API X65. Consideration of the low-cyclic loading as well as the large plastic strains applied to the girth welds of 
pipelines, the fracture assessment and fatigue crack growth rate were discussed due to the existence of crack at the 
welded girth (Zhang et al., 2018; Agbakwuru et al.,2016). Various studies on fatigue crack growth of an embedded crack 
were investigated using parameters, namely, stress ratio, crack shapes and sizes (Dake et al., 2012; Zhang et al., 2018). 
In a structure under cyclic loadings when multiple interacting cracks exist, the cracks propagate towards each other 
and merge into a single large crack which expedites its growth rate much faster (Kamaya, 2008). Therefore, multiple 
cracks interaction has caught attention of many researchers and extensive research has been done under various 
conditions (Konosu and Kasahara, 2012; Kotousov and Chang, 2015). Several experiments were conducted to 
investigate the fatigue crack growth behavior of interacting cracks. For instance, coalescing cracks on a plate fatigue life 
prediction of was done by Soboyejo et al. (1990). Furthermore, experiments were conducted on a plate specimen with 
two semi-circular cracks caused by fatigue (Kamaya, 2008). In general, offshore steel risers are generally under 
fluctuation loadings due to waves, currents and sea ground motions, these fluctuated loadings pose some threat to 
unflawed structural systems and it is possible that pre-existing embedded defects will increase due to the loading cycles. 

Over the years there have been a shift towards data driven solutions with the help of machine learning methods in 
discovering patterns and performance prediction in different fields of science and engineering. Machine learning models 
such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naive Bayes, decision tree, random forest, an 
ensemble model, and Neural Network (NN), have been vastly adopted for classification as an extension of machine 
learning.  

Guarize et al., (2009) adopted hybrid ANN-FEA methodology in the prediction of dynamic top tension of a mooring-line 
and in the evaluation of DNV-LRFD. The predictions showed very-good agreement with the FEA results, and the 
computational time was reduced by a factor of about 20 times. Pina et al. (2013), also studied different substituted 
models to predict coupled mooring and riser top tension dynamics behavior with significant decrease on FEA 
computational costs. Artificial Neural Network (ANN) methods can be used to classify and estimate the damage of 
fatigue on process systems (De Lautour and Omenzetter, 2010). Pujol and Pinto (2011) proposed a fatigue life 
prediction approach using an ANN. Durodola et al. (2018), in their paper presented an ANN approach in order to study 
the effect of mean stress in fatigue life prediction in the frequency domain. More so, Zhu et al.  (2019) proposed a 
probabilistic model to predict damage in an orthotropic steel deck using a Bayesian network. Fathalla et 
al. (2018) created ANN for the diagnosis of the fatigue life of a service road bridge. A generic algorithm was implemented 
by Franulović et al., (2009) to describe the elasto-plastic behavior in low cycle fatigue. Shabbir and Omenzetter (2016) 
combined a sequential niche technique with genetic algorithm with the aim to minimize the error between the model 
and structure model. Jimenez-Martinez and Alfaro-Ponce (2019) proposed a fatigue damage evaluation using ANN. 
Müller et al., (2017) performed fatigue response surface modeling evaluation using Latin Hypercube Sampling and ANN. 
Furthermore, Wong and Kim (2018) developed an ANN model which predicted the vortex induced vibration fatigue 
damage of a top tensioned riser. Lopes and Ebecken (1997) estimated the fatigue damage of fixed offshore structures 
using a feed forward back propagation neural network. Li et al. (2018) proposed an approach for wide banded fatigue 
prediction of catenary mooring lines based on an ANN. Recently, Raeihagh et al., (2020) combined an artificial neural 
network (ANN) and a fuzzy inference system (FIS) as a new model to assess the risk associated with pipelines. This 
model was used for oil and gas-pipeline risk estimation in a bid to model the most significant and influential factors in 
pipeline performance. They verified the accuracy of their-model, by using an inter-phase shore pipe of phase 9–10 
refinery in the South Pars Gas field and their results gave evidence that the proposed model gives a higher level of 
accuracy, precision, and reliability in terms of pipeline risk assessment. Fernades et al., (2021) extracted profiles of 
pipeline cross sections from DSM and then obtained a geometric information of each profile and modeled it based on 
ANN and Random Forest (RF) of free span condition classification. This was done to develop a routine to semi-
automatically identify the free span condition when a pipe segment is not supported by the seabed. Their results 
indicated that the ANN and RF proved satisfactory as the free span condition classification results was with global 
accuracy of 86.8% and 89.9%, respectively (Fernades et al., 2021).  

One major interesting alternative to evaluate dynamic responses of marine structures with a significant reduction in 
computational time is the utilization of hybrid methods combining FEA with Artificial Neural Networks (ANNs) (Yooil 
2015). The idea behind ANN is to try to mimic the human brain’s ability to learn, recognize and predict patterns of 
different types. Steel risers are affected by cyclic loadings from currents and waves during their period of operation. 
These fluctuated loadings can initiate cracks in pipelines and result in fatigue crack growth (Agbakwuru et al., 2016). 
This fatigue crack growth produces several damages to offshore and geotechnical infrastructure. This paper presents 
how an ANN learns, recognizes and predicts the pattern of the mathematical model that relates the motions of an 
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offshore steel riser due to dynamic load of waves. One of the most interesting alternatives to evaluate dynamic 
responses of marine steel risers with a significant reduction in the time of computation is the utilization of hybrid 
methods, combining Finite Element Analysis (FEA) with Artificial Neural Networks (ANNs). The idea of these methods 
is to bring in the remarkable capacity of learning and prediction of neural network to replace the burdensome numerical 
integration of a time domain dynamic analysis by finite elements method. 

This work presents an application of a hybrid ANN-FEA method for the prediction of cyclic stresses due to waves on a 
steel riser connected to a fixed platform, in order to reduce computational costs of time domain stochastic simulations. 
It is noted that steel risers to a fixed platform is often clamped to the wellhead platform structures. Most times, these 
clamps are of carbon steel materials which do corrode and fall off. For the purpose of this work it is assumed that the 
clamps are unavailable. The great advantage of a hybrid ANN-FEA method is the joining of the best features from both 
ANN and FEA methods, keeping a fair compromise between model sophistication and required computational costs. To 
the authors’ knowledge, the previous works did not employ a similar approach to predict the load effects for riser points 
near the TDZ nor to evaluate the total fatigue damage in this region. The aim of this work is to develop a hybrid model 
of FEA-ANN for the prediction of offshore steel pipeline riser fatigue due wave loading responses on the structure. It 
involved training and validation of ANN model using the time series response obtained from the FEA  

2 Material and methods 

The FEA simulation of the steel riser model was done to ascertain different fatigue damage resulting from different sea 
state. The sea state was represented by a time series response graph of 200 day’s significant wave height and the 
environmental load was also shown in a time series graph. A scattered diagram was also used to represent the 
significant wave height and the environmental load. The environmental load was used to simulate the fine meshed 
model riser to ascertain the yield stress, strain deformation, percentage fatigue damage and fatigue life. This was done 
for a 200 day’s environmental load collected from West Africa offshore (Forcados). This FEA results were then used to 
train the ANN model.. 

Table 1 Steel riser Properties  

 Parameter Value 

1 External Diameter (m) 0.37 

2 Wall thickness (mm) 28.58 

3 Elasticity Module (KN/m2) 2.07E+8 

4 Specific Weight (KN/m2) 77.00 

5 Internal Fluid Weight (KN/m2) 2.0 (gas) 

6 Soil vertical Stiffness (KN/m) 1000.00 

7 Top Internal Pressure (MPa) 18.0 

8 Temperature of fluid (oC) 55 

9 Water Depth (m) 22 

10 Internal diameter (m) 0.33 

This model riser adopted in this study consists of an outer diameter of 0.37m and a wall thickness of 28.58mm which 
was used to export fluid to the offshore platform from a water depth of 22m, the steel riser’s physical and geometric 
composition is highlighted in Table 1. 

The cases of the environmental loading that were picked to perform the fatigue analysis were determined by static 
offsets and wave loadings from Forcados in West African offshore. The same profile was employed for all loading cases 
that was taken into consideration in the fatigue analysis. 

 A 200 days’ significant wave height was collected from the offshore location and used to carry out a usual FEA-based 
fatigue analysis. This was performed initially for comparison and was implemented to ascertain the life cycle of fatigue 
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of the steel-riser, ensuring that the combining methodology of the FEA – ANN was adopted and deduced to the degree 
of critical structure. 

Artificial-neural network (ANN) can biologically be described as the human neural network system which is capable of 
mimicking the human brain. Mathematically it has the ability to approximate, with a certain limit of errors, any 
mathematical function in theory, and can also represents any kind of mathematical function, even functions with some 
high degrees of nonlinearities. ANNs are used to find out the mathematical relationship that exist between the motions 
of an offshore floating unit and the respective steel riser load actions including the axial tension 𝑇(𝑡) and bending 
moments 𝑀𝑦(t) and 𝑀𝑧(t). In such application, the ANN must be trained with the data and results from a very short 

simulation obtained by the FEA and then the ANN is used to predict longer loading responses time series. 

ANN architecture that is extensively used is composed up of three layers consisting of the-input layer, hidden-layer and 
output-layer. The first strata obtain the inputs-values of the network, the output-layer sends the responses of the-
network. The concealed and productivity layers are interconnected with a mathematical element acknowledged as 
artificial neurons, (numerical functions). These mathematical fundamentals, carry’s a load (synapse loading) that 
controls the function of the mappings between the three layers, there are also bias parameters, with-unitary values. 
This configuration is shown in Figure 1. 

 

Figure 1 ANN Architecture 

A neuron-j-in the hidden-layer receives an input from the input-layer 𝑢𝑗 , given by 

𝑢𝑗 = 𝑤0,𝑗
𝐼𝐻 . 1 + ∑ (𝑤𝑖,𝑗

𝐼𝐻 . 𝑥𝑖)𝐼
𝑖=1  ………………..2.1 

where I represent the number of network-inputs, 𝑤0,𝑗 
𝐼𝐻 represent the bias-load of the input-layer, 𝑤𝑖𝑗

𝐼𝐻 is the load between 

the input i and the neuron j in the second-layer (j=1...J, J is the total number of hidden-layer units in the neurons), and 
𝑥𝑖  is the i-network input, and each neuron-revert an output-denoted by 𝑦𝑗  

𝑦𝑗 = 𝜑𝐻(𝑢𝑗) = 𝜑𝐻(𝑤0,𝑗
𝐼𝐻 . 1 + ∑ (𝑤𝑖,𝑗

𝐼𝐻 . 𝑥𝑖)
𝐼
𝑖=1 )…………2.2 

where 𝜑𝐻(. )  signifies the activation-function, like the sigmoid functions, hyperbolic-tangent and logistic-functions. 
When considering an ANN with a single-output parameter (R) is estimated by 

𝑅 = 𝜑𝑂(𝑣) = 𝜑𝑂(𝑤0
𝐻𝑂 . 1 + ∑ (𝑤𝑗

𝐻𝑂 . 𝑦𝑗)𝐽
𝑖=1 ) ……………..2.3 

where 𝜑𝑂(. ) indicates activation-function of the neuron at the output-layer, usually a linear-function. 
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2.1 Training /Validation 

When considering the inputs and output of an ANN, the time series as earlier describe as the inputs 𝑥𝑖  and output (𝑅), 
can be ascertain in relation between the inputs 𝑥𝑖  and output (𝑅) can be express as, 

𝑅(𝑤, 𝑡) = 𝑓(𝑤, 𝑥(𝑡))  …………….2.4 

Where 𝑥(𝑡) represents the vector-comprises of the time-series of the inserts data 

𝑤, is the matrix-containing the summation of artificial neural-network connecting the loads.  

Given a set of time-series and the conforming-outputs, the network load also called weight (w) can be derived in a 
manner that the network-output is in line with the given-outputs sample. Optimization technique is adopted and applied 
to adjust the load ( 𝑤)  , and the method is known as neural-network exercise. The reduction of the optimization 
challenges can be expressed by applying the error in mean square (E). This is mathematically expressed as: 

𝐸 (𝑤) =
1

𝑁
∑ (𝑅(𝑤, 𝑡) − 𝑣(𝑡))

2𝑁
𝑡=1  ……………2.5 

=
1

𝑁
∑(𝑓(𝑤, 𝑥(𝑡)) − 𝑣(𝑡))2

𝑁

𝑡=1

 

𝑁 represents the length of the specimen time-series for exercise, where 𝑣(𝑡) is the sample desired output. A repeatedly 
optimization procedure, such as the vertical descend technique is employed to get optimal results for synapse-loading 
𝑤 (weights). The loadings are adjusted by reducing the random variables normally.  

 

Figure 2 Usual behaviour of the training and validation errors 

During optimization procedure (Figure 2), each repetition is term epoch. The output and input time-series are regulated 
to enhance the procedure of the exercise. Usually, errors of two kinds are spotted when exercising the network. the first 
one is as a result of stopping the training early, which resulted in few deviations from the ideal conditions of loads and 
creating large errors in prediction. The other type of error transpires due to excessive exercise of the ANN. Error in 
network is illustrated in the patterns possessed in Figure 2. The training progression should be stationary to ease the 
increase in validation error. This procedure prevents the overfitting (over trained) and guarantees an accurate network 
simplification for introduction of new-inputs. 

2.2 Training the model 

The results obtained from the FEA analysis was used to train the NARX model as detailed in the previous chapter, a total 
of 400 data was used to train the model where 70% (280) of the data was used as training data, while 15% (60) data 



International Journal of Engineering Research Updates, 2023, 04(01), 020–033 

25 

was used as validation and each testing. The result from the training is shown in Table 2 and training architecture in 
Figure 3. 

Table 2 MATLAB Results obtained from training the ANN model 

 

 

 

Figure 3 NARX-ANN Training Architecture from MATLAB 

3 Results and discussion 

Data from Forcados offshore was used to ascertain the impact of environmental load on the steel riser. A total of a 200 
days daily Hs was used in the study. The extract is found in Table 4. Figures 4, 5 and 6 show the time series responses 
of the significant wave height and the scattered diagram of both the significant wave height and the environmental load. 
The highest wave height experience was 1.87m and the lowest was 0.45m and this was also seen that those days had 
the highest and lowest environmental loading respectively. 
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Figure 4 Time series response of 200 days’ significant wave height  

 

Figure 5 Time series response environmental load of 200 days 

 

Figure 6 Scattered Diagram of 200 days Significant Wave Height and Environment Load 
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3.1 Result Obtained from the FEA 

The finite element analysis was carried out on the steel riser model and the mesh result is shown in Figures 7 and 8. 
Figure 7 showed the solid mesh of the model steel riser while Figure 8 showed a zoomed mesh of the model steel riser. 
The properties of the model are shown in Table 3 and the mesh produced was high so as to ensure that the load on the 
element of the steel riser is well analyzed, the maximum and minimum mesh was 139.55mm and 46.52mm respectively. 
Table 4 indicates an extract of some results from the FEA computations. 

 

Figure 7 Solid Mesh of Model Steel Riser 

 

Figure 8 Zoomed solid mesh of model steel riser 
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Table 3 Properties of FEA of steel riser model 

S/N Steel riser model properties Values 

1 Mesh Type Solid Mesh 

2 Jacobian points for High quality mesh Blended curvature-based mesh 

3 Max element size 139.553mm 

4 Min element size 46.5172mm 

5 Mesh Quality High 

6 Total nodes 44504 

7 Total Elements 22189 

8 Maximum Aspect Ratio 11.056 

9 Percentage of element with Aspect Ration <3 21.2 

10 Percentage of element with Aspect Ration >10 0.0361 

11 % of distorted element (Jacobian) 0 

12 Number of distorted elements 0 

13 Time to complete Mesh 0:00:12 

 

Table 4 Result extracted from the FEA simulation of the model steel riser 

Sig. Wave 
height (m) 

Environment 
Load (N/m) 

Max Stress on 
Riser (N/m2) 

Max Strain on 
Riser (m)  

% Fatigue 
Damage  

Min Total Cycle 
Life (x e4) 

0.32 150 4.01E+06 1.74E-04 0.010 111.951 

0.41 300 3.90E+06 1.82E-04 0.020 111.322 

0.50 450 3.79E+06 1.91E-04 0.030 110.693 

0.59 600 3.68E+06 2.00E-04 0.040 110.064 

0.68 750 3.57E+06 2.09E-04 0.050 109.435 

0.77 900 3.46E+06 2.19E-04 0.060 108.806 

0.85 1050 3.35E+06 2.29E-04 0.070 108.177 

0.94 1200 3.24E+06 2.39E-04 0.080 107.548 

1.03 1350 3.13E+06 2.51E-04 0.090 106.919 

1.12 1500 3.02E+06 2.62E-04 0.100 106.29 

1.21 1650 2.91E+06 2.74E-04 0.110 105.661 

1.30 1800 2.80E+06 2.87E-04 0.120 105.032 

1.38 1950 2.69E+06 3.00E-04 0.130 104.403 

1.47 2100 2.58E+06 3.14E-04 0.140 103.774 

1.56 2250 2.47E+06 3.29E-04 0.150 103.145 

1.65 2400 2.36E+06 3.44E-04 0.160 102.516 

1.74 2550 2.25E+06 3.60E-04 0.170 101.887 

1.83 2700 2.14E+06 3.77E-04 0.180 101.258 
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1.91 2850 2.03E+06 3.94E-04 0.190 100.629 

2.00 3000 1.92E+06 4.12E-04 0.200 100 

 

The cyclic stress used for the fatigue computation is depicted in Figure 9. The training, error measures and validation 
are represented by Figure 10 and Figure 11. The response of the output elements in time series and regression tests are 
shown Figures 12 and 13 respectively. 

 

Figure 9 Time response analysis of the stress on the model steel riser 

 

Figure 10 Performance of NARX-ANN Model of steel riser fatigue or prediction 
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Figure 11 Training State of the NARX-ANN Model of steel riser fatigue prediction 

 

Figure 12 Time series response of the Hybrid FEA-ANN Model of steel riser fatigue prediction 
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Figure 13 Regression Analysis of the NARX-ANN Model of steel riser fatigue prediction 

The neural network when trained effectively with the right and available data, learns from the network and creates a 
neuron that will help in prediction. However, the neural network depends on availability of historical data which will 
help in data predication as discussed by several authors. Therefore, hybridizing the FEA and neural network will 
produce more accurate results with less time required and less complex computation.  

From the model steel riser elements, the stress time series obtained by the FEA method and the corresponding one 
provided by the full FEA for the most critical point on the element with the lowest fatigue life at the top. The stress time 
series is taken from the loading case that contributes most to the total fatigue damage. Figure 13 shows the hybrid time 
series response of the predicted result. 

In the modeled riser, each load case and global response applied to ANN was trained by a 200 data response time-series 
made available by FEA. The time of computation associated with the fatigue-damage evaluation and ANNs training was-
very low when likened to the full global FEA. Hybrid ANN-FEA technique can be roughly 20-22 times faster than the 
usual FEA procedure. The results obtained in this project is productive and calls for further study in the development 
of an automatic-procedure to set-up the ANN architecture, training, and evaluation, to enhance the practical utilization 
of the methodology.  
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4 Conclusion 

Fatigue life assessment is essential for the integrity of offshore pipelines and the use of traditional FEA has brought 
about several computational challenges. However, the use of machine learning like ANN used in this study has been able 
to add good value. The hybrid methods whereby ANN is combined with FEA has shown to have excellent accuracy and 
performance for fatigue assessment. 
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